Perceptual Font Manifold from Generative Model

Yuki Fujita, Haoran Xie, K. Miyata
{"title":"Perceptual Font Manifold from Generative Model","authors":"Yuki Fujita, Haoran Xie, K. Miyata","doi":"10.1109/NICOInt.2019.00016","DOIUrl":null,"url":null,"abstract":"Though in recent times, various fonts are available online for public usage, it is difficult and challenging to generate, explore, and edit the fonts to meet the preferences of all users. To address these issues, we propose in this paper, a font manifold interface to visualize the perceptual adjustment in the latent space of a generative model of fonts. In this paper, we adopt the variational autoencoder network for font generation. Then, we conducted a perceptual study on the generated fonts from the multi-dimensional latent space of the generative model. After we obtained the distribution data of specific preferences, we utilized a manifold learning approach to visualize the font distribution. As a case study of our proposed method, we developed a user interface for generated font exploration in the designated user preference using a heat map representation.","PeriodicalId":436332,"journal":{"name":"2019 Nicograph International (NicoInt)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Nicograph International (NicoInt)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NICOInt.2019.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Though in recent times, various fonts are available online for public usage, it is difficult and challenging to generate, explore, and edit the fonts to meet the preferences of all users. To address these issues, we propose in this paper, a font manifold interface to visualize the perceptual adjustment in the latent space of a generative model of fonts. In this paper, we adopt the variational autoencoder network for font generation. Then, we conducted a perceptual study on the generated fonts from the multi-dimensional latent space of the generative model. After we obtained the distribution data of specific preferences, we utilized a manifold learning approach to visualize the font distribution. As a case study of our proposed method, we developed a user interface for generated font exploration in the designated user preference using a heat map representation.
基于生成模型的感知字体流形
虽然在最近的时代,各种字体可供公众在线使用,但生成、探索和编辑字体以满足所有用户的偏好是困难和具有挑战性的。为了解决这些问题,我们在本文中提出了一个字体歧管接口来可视化字体生成模型潜在空间中的感知调整。本文采用变分自编码器网络进行字体生成。然后,我们从生成模型的多维潜在空间对生成的字体进行了感知研究。在获得特定偏好的分布数据后,我们使用了一种多元学习方法来可视化字体分布。作为我们提出的方法的一个案例研究,我们开发了一个用户界面,用于在指定的用户偏好中使用热图表示生成字体探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信