A Comparison of Artificial Neural Network(ANN) and Support Vector Machine(SVM) Classifiers for Neural Seizure Detection

Mohamed A. Elgammal, H. Mostafa, K. Salama, A. Mohieldin
{"title":"A Comparison of Artificial Neural Network(ANN) and Support Vector Machine(SVM) Classifiers for Neural Seizure Detection","authors":"Mohamed A. Elgammal, H. Mostafa, K. Salama, A. Mohieldin","doi":"10.1109/MWSCAS.2019.8884989","DOIUrl":null,"url":null,"abstract":"In this paper, two different classifiers are software and hardware implemented for neural seizure detection. The two techniques are support vector machine(SVM) and artificial neural networks(ANN). The two techniques are pretrained on software and only the classifiers are hardware implemented and tested. A comparison of the two techniques is performed on the levels of performance, energy consumption and area. The SVM is pretrained using gradient ascent (GA) algorithm, while the neural network is implemented with single hidden layer. It is found that the ANN consumes more power than the SVM by a factor of 4 with almost the same performance. However, the ANN finishes classification in much less number of clock cycles than the SVM by a factor of 34.","PeriodicalId":287815,"journal":{"name":"2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.2019.8884989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper, two different classifiers are software and hardware implemented for neural seizure detection. The two techniques are support vector machine(SVM) and artificial neural networks(ANN). The two techniques are pretrained on software and only the classifiers are hardware implemented and tested. A comparison of the two techniques is performed on the levels of performance, energy consumption and area. The SVM is pretrained using gradient ascent (GA) algorithm, while the neural network is implemented with single hidden layer. It is found that the ANN consumes more power than the SVM by a factor of 4 with almost the same performance. However, the ANN finishes classification in much less number of clock cycles than the SVM by a factor of 34.
人工神经网络(ANN)与支持向量机(SVM)分类器在神经癫痫检测中的比较
在本文中,两种不同的分类器是软件和硬件实现的神经癫痫检测。这两种技术分别是支持向量机(SVM)和人工神经网络(ANN)。这两种技术在软件上进行预训练,只有分类器在硬件上实现和测试。在性能、能耗和面积方面对两种技术进行了比较。支持向量机采用梯度上升(GA)算法进行预训练,神经网络采用单隐层实现。结果表明,在性能几乎相同的情况下,人工神经网络比支持向量机多消耗4倍的功率。然而,人工神经网络完成分类的时钟周期比支持向量机少了34倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信