Accuracy Enhancement in Face-pose Estimation Network Using Incrementally Updated Face-shape Parameters

Makoto Sei, A. Utsumi, H. Yamazoe, Joo-Ho Lee
{"title":"Accuracy Enhancement in Face-pose Estimation Network Using Incrementally Updated Face-shape Parameters","authors":"Makoto Sei, A. Utsumi, H. Yamazoe, Joo-Ho Lee","doi":"10.1109/UR49135.2020.9144866","DOIUrl":null,"url":null,"abstract":"In this paper, we pursue the refinement of a face-pose estimation method using incrementally updated face-shape parameters. Network-based algorithms generally rely on an on-line training process that uses a large dataset, and a trained network usually works in a one-shot manner, i.e., each input image is processed one by one with a static network. On the other hand, we expect a great advantage from having sequential observations, rather than just single-image observations, in many practical applications. In such cases, the dynamic use of multiple observations can contribute to improving system performance. In our previous study, therefore, we introduced an incremental personalization mechanism using sequential observations to a network-based face-pose estimation method, where the averaged parameters in iterative face-shape estimations are used for face-pose estimation. The head pose estimation accuracy of our method was about 2 degrees. In this paper, we conduct an experiment to examine the error distribution of face-shape estimation and discuss an effective incremental personalization mechanism to update the face-shape parameters based on the error distribution.","PeriodicalId":360208,"journal":{"name":"2020 17th International Conference on Ubiquitous Robots (UR)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 17th International Conference on Ubiquitous Robots (UR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UR49135.2020.9144866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we pursue the refinement of a face-pose estimation method using incrementally updated face-shape parameters. Network-based algorithms generally rely on an on-line training process that uses a large dataset, and a trained network usually works in a one-shot manner, i.e., each input image is processed one by one with a static network. On the other hand, we expect a great advantage from having sequential observations, rather than just single-image observations, in many practical applications. In such cases, the dynamic use of multiple observations can contribute to improving system performance. In our previous study, therefore, we introduced an incremental personalization mechanism using sequential observations to a network-based face-pose estimation method, where the averaged parameters in iterative face-shape estimations are used for face-pose estimation. The head pose estimation accuracy of our method was about 2 degrees. In this paper, we conduct an experiment to examine the error distribution of face-shape estimation and discuss an effective incremental personalization mechanism to update the face-shape parameters based on the error distribution.
利用增量更新的人脸形状参数提高人脸姿态估计网络的精度
在本文中,我们使用增量更新的面部形状参数来追求面部姿态估计方法的改进。基于网络的算法通常依赖于使用大数据集的在线训练过程,训练后的网络通常以一次性的方式工作,即使用静态网络逐个处理每个输入图像。另一方面,我们期望在许多实际应用中,序列观测比单图像观测有很大的优势。在这种情况下,动态使用多个观测值有助于提高系统性能。因此,在我们之前的研究中,我们在基于网络的人脸姿态估计方法中引入了一种使用顺序观测的增量个性化机制,其中使用迭代人脸形状估计中的平均参数进行人脸姿态估计。该方法的头部姿态估计精度约为2度。本文通过实验研究了人脸形状估计的误差分布,并讨论了一种有效的基于误差分布的人脸形状参数增量个性化更新机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信