An empirical comparison of two crossover operators in real-coded genetic algorithms for constrained numerical optimization problems

Adriana Cervantes-Castillo, E. Mezura-Montes, C. Coello
{"title":"An empirical comparison of two crossover operators in real-coded genetic algorithms for constrained numerical optimization problems","authors":"Adriana Cervantes-Castillo, E. Mezura-Montes, C. Coello","doi":"10.1109/ROPEC.2014.7036347","DOIUrl":null,"url":null,"abstract":"This paper presents an empirical analysis of two well-known crossover operators in real-coded genetic algorithms: Blend Crossover (BLX-a) and Simulated Binary Crossover (SBX), for constrained numerical optimization problems. The aim of the study is to analyze the ability of each operator to generate feasible solutions and also suggest suitable variation operator parameter values for such purpose. A performance measure is proposed to evaluate the capacity of each operator to find feasible offspring. A set of fourteen benchmark problems is used in the experiments. The results show that in both crossover operators the exploration ability must be enhanced so as to get better results.","PeriodicalId":357133,"journal":{"name":"2014 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROPEC.2014.7036347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents an empirical analysis of two well-known crossover operators in real-coded genetic algorithms: Blend Crossover (BLX-a) and Simulated Binary Crossover (SBX), for constrained numerical optimization problems. The aim of the study is to analyze the ability of each operator to generate feasible solutions and also suggest suitable variation operator parameter values for such purpose. A performance measure is proposed to evaluate the capacity of each operator to find feasible offspring. A set of fourteen benchmark problems is used in the experiments. The results show that in both crossover operators the exploration ability must be enhanced so as to get better results.
约束数值优化问题实数编码遗传算法中两个交叉算子的经验比较
本文对实数编码遗传算法中两个著名的交叉算子:混合交叉算子(BLX-a)和模拟二元交叉算子(SBX)进行了实证分析,以解决有约束的数值优化问题。研究的目的是分析每个算子产生可行解的能力,并为此提出合适的变异算子参数值。提出了一种性能度量来评价每个算子寻找可行子代的能力。实验中使用了一组14个基准问题。结果表明,在两种交叉算子中,为了获得更好的效果,必须提高勘探能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信