Jinhong Liu, peixiong zhao, L. Massengill, K. Galloway, J. Attia
{"title":"Circuit-level model for single-event burnout in N-channel power MOSFET's","authors":"Jinhong Liu, peixiong zhao, L. Massengill, K. Galloway, J. Attia","doi":"10.1109/RADECS.1999.858572","DOIUrl":null,"url":null,"abstract":"Single Event Burnout (SEB) of power MOSFET's is a catastrophic failure mechanism that is initiated by the passage of a heavy ion through the device. In this paper, an SEB circuit model of the power MOSFET has been developed. The calibrations of model parameters are illustrated. The dependence of SEB sensitivity on various parameters is presented and compared with experimental results. The parasitic resistance and capacitance of the device as well as the circuit parameters contribute to the length of SEB pulse. Increasing the switching frequency of the power MOSFET may be a possible way to prevent SEB in applications.","PeriodicalId":135784,"journal":{"name":"1999 Fifth European Conference on Radiation and Its Effects on Components and Systems. RADECS 99 (Cat. No.99TH8471)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 Fifth European Conference on Radiation and Its Effects on Components and Systems. RADECS 99 (Cat. No.99TH8471)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADECS.1999.858572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Single Event Burnout (SEB) of power MOSFET's is a catastrophic failure mechanism that is initiated by the passage of a heavy ion through the device. In this paper, an SEB circuit model of the power MOSFET has been developed. The calibrations of model parameters are illustrated. The dependence of SEB sensitivity on various parameters is presented and compared with experimental results. The parasitic resistance and capacitance of the device as well as the circuit parameters contribute to the length of SEB pulse. Increasing the switching frequency of the power MOSFET may be a possible way to prevent SEB in applications.