CycleGAN Based on Relative Loss Functions

Huibai Wang, Liyuan Yu
{"title":"CycleGAN Based on Relative Loss Functions","authors":"Huibai Wang, Liyuan Yu","doi":"10.1109/CISP-BMEI48845.2019.8965890","DOIUrl":null,"url":null,"abstract":"At the upsurge of deep learning, leap-forward achievements have been made in the field of computer vision, among which the application of CycleGAN to style transfer is eye-catching. The CycleGAN theory argues that concentration on making fake data closer to the real value alone is unfavorable to the stability of the network output. This paper introduces the concept of relativity to CycleGAN so to improve the stability of the network.","PeriodicalId":257666,"journal":{"name":"2019 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP-BMEI48845.2019.8965890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

At the upsurge of deep learning, leap-forward achievements have been made in the field of computer vision, among which the application of CycleGAN to style transfer is eye-catching. The CycleGAN theory argues that concentration on making fake data closer to the real value alone is unfavorable to the stability of the network output. This paper introduces the concept of relativity to CycleGAN so to improve the stability of the network.
基于相对损失函数的CycleGAN
在深度学习的热潮中,计算机视觉领域取得了跨越式的成就,其中CycleGAN在风格迁移中的应用引人注目。CycleGAN理论认为,仅仅专注于使假数据更接近真实值,不利于网络输出的稳定性。本文将相对性的概念引入到CycleGAN中,以提高网络的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信