Experimental Verification on the Prediction of the Trend in Radio Resource Availability in Cognitive Radio

S. Kaneko, S. Nomoto, T. Ueda, S. Nomura, Kazunori Takeuchi, K. Sugiyama
{"title":"Experimental Verification on the Prediction of the Trend in Radio Resource Availability in Cognitive Radio","authors":"S. Kaneko, S. Nomoto, T. Ueda, S. Nomura, Kazunori Takeuchi, K. Sugiyama","doi":"10.1109/VETECF.2007.333","DOIUrl":null,"url":null,"abstract":"This paper presents a prediction of the trend in radio resource availability in cognitive radio. In this paper, cognitive radio is defined as the wireless communication technology in which each node communicates via an optimal wireless system based on recognition of the radio resource availability in heterogeneous wireless communication systems. We focused on the prediction of the network allocation vector (NAV) value for radio resource availability in IEEE 802.11, which is one of the candidates for installation in a cognitive radio [1]. We verified the prediction of the future value of the trend in the NAV time series; based on an auto-regressive model (AR model) and using captured data within a real environment. Based on the results of the verification, we show that prediction based on the AR model with suitable parameters is applicable in comparison when the average of the last 10 samples is used as a predicted value and the case where prediction is not applied. Furthermore, it is possible to set up a long update interval for the regression coefficients.","PeriodicalId":261917,"journal":{"name":"2007 IEEE 66th Vehicular Technology Conference","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 66th Vehicular Technology Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VETECF.2007.333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper presents a prediction of the trend in radio resource availability in cognitive radio. In this paper, cognitive radio is defined as the wireless communication technology in which each node communicates via an optimal wireless system based on recognition of the radio resource availability in heterogeneous wireless communication systems. We focused on the prediction of the network allocation vector (NAV) value for radio resource availability in IEEE 802.11, which is one of the candidates for installation in a cognitive radio [1]. We verified the prediction of the future value of the trend in the NAV time series; based on an auto-regressive model (AR model) and using captured data within a real environment. Based on the results of the verification, we show that prediction based on the AR model with suitable parameters is applicable in comparison when the average of the last 10 samples is used as a predicted value and the case where prediction is not applied. Furthermore, it is possible to set up a long update interval for the regression coefficients.
认知无线电中无线电资源可用性趋势预测的实验验证
本文对认知无线电中无线电资源可用性的趋势进行了预测。本文将认知无线电定义为在异构无线通信系统中,基于对无线电资源可用性的识别,各节点通过最优无线系统进行通信的无线通信技术。我们专注于预测IEEE 802.11中无线电资源可用性的网络分配向量(NAV)值,这是在认知无线电中安装的候选标准之一[1]。我们验证了NAV时间序列趋势的未来值预测;基于自回归模型(AR模型)并在真实环境中使用捕获的数据。验证结果表明,在以最近10个样本的平均值作为预测值和不进行预测的情况下,采用合适参数的AR模型进行预测是适用的。此外,还可以为回归系数设置较长的更新间隔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信