SWIPE

Sujan Kumar Gonugondla, Ameya D. Patil, Naresh R Shanbhag
{"title":"SWIPE","authors":"Sujan Kumar Gonugondla, Ameya D. Patil, Naresh R Shanbhag","doi":"10.1145/3400302.3415642","DOIUrl":null,"url":null,"abstract":"Crossbar-based in-memory architectures have emerged as an attractive platform for energy-efficient realization of deep neural networks (DNNs). A key challenge in such architectures is achieving accurate and efficient writes due to the presence of bitcell conductance variations. In this paper, we propose the Single-Write In-memory Program-vErify (SWIPE) method that achieves high accuracy writes for crossbar-based in-memory architectures at 5×-to-10× lower cost than standard program-verify methods. SWIPE leverages the bit-sliced attribute of crossbar-based in-memory architectures and the statistics of conductance variations to compensate for device non-idealities. Using SWIPE to write into ReRAM crossbar allows for a 2× (CIFAR-10) and 3× (MNIST) increase in storage density with < 1% loss in DNN accuracy. In particular, SWIPE compensates for 4.8×-to-7.7× higher conductance variations. Furthermore, SWIPE can be augmented with injection-based training methods in order to achieve even greater enhancements in robustness.","PeriodicalId":367868,"journal":{"name":"Proceedings of the 39th International Conference on Computer-Aided Design","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 39th International Conference on Computer-Aided Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3400302.3415642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Crossbar-based in-memory architectures have emerged as an attractive platform for energy-efficient realization of deep neural networks (DNNs). A key challenge in such architectures is achieving accurate and efficient writes due to the presence of bitcell conductance variations. In this paper, we propose the Single-Write In-memory Program-vErify (SWIPE) method that achieves high accuracy writes for crossbar-based in-memory architectures at 5×-to-10× lower cost than standard program-verify methods. SWIPE leverages the bit-sliced attribute of crossbar-based in-memory architectures and the statistics of conductance variations to compensate for device non-idealities. Using SWIPE to write into ReRAM crossbar allows for a 2× (CIFAR-10) and 3× (MNIST) increase in storage density with < 1% loss in DNN accuracy. In particular, SWIPE compensates for 4.8×-to-7.7× higher conductance variations. Furthermore, SWIPE can be augmented with injection-based training methods in order to achieve even greater enhancements in robustness.
刷卡
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信