D. Rwegasira, Imed Ben Dhaou, Aron Kondoro, Naiman Shililiandumi, Amleset Kelati, N. Mvungi, H. Tenhunen
{"title":"A multi-agent system for solar driven DC microgrid","authors":"D. Rwegasira, Imed Ben Dhaou, Aron Kondoro, Naiman Shililiandumi, Amleset Kelati, N. Mvungi, H. Tenhunen","doi":"10.1109/ICCEREC.2017.8226677","DOIUrl":null,"url":null,"abstract":"This paper proposes a Multi-Agent System (MAS) modeling and control architecture for a solar driven DC microgrid. The microgrid consists of solar system as a source of power, energy storage system, critical and non-critical houses (loads) with their own solar and storage as well. For the proposed MAS an individual house can have the ability to sell extra power to the main solar source. The main solar source can generate power and provide to the community when needed. The MAS also controls and monitors an automatic load shedding technique to disconnect non critical loads when there is a deficiency of power supply to the system. The validity of the objectives are demonstrated by agent based system which runs under REPAST simulation tool which used successfully three loads: hospital and two houses during simulation.","PeriodicalId":328054,"journal":{"name":"2017 International Conference on Control, Electronics, Renewable Energy and Communications (ICCREC)","volume":"371 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Control, Electronics, Renewable Energy and Communications (ICCREC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCEREC.2017.8226677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
This paper proposes a Multi-Agent System (MAS) modeling and control architecture for a solar driven DC microgrid. The microgrid consists of solar system as a source of power, energy storage system, critical and non-critical houses (loads) with their own solar and storage as well. For the proposed MAS an individual house can have the ability to sell extra power to the main solar source. The main solar source can generate power and provide to the community when needed. The MAS also controls and monitors an automatic load shedding technique to disconnect non critical loads when there is a deficiency of power supply to the system. The validity of the objectives are demonstrated by agent based system which runs under REPAST simulation tool which used successfully three loads: hospital and two houses during simulation.