Evolutionary Optimization of Multi-step Dynamic Systems Learning

Edgar Ademir Morales-Perez, H. Iba
{"title":"Evolutionary Optimization of Multi-step Dynamic Systems Learning","authors":"Edgar Ademir Morales-Perez, H. Iba","doi":"10.1109/ICMRE54455.2022.9734110","DOIUrl":null,"url":null,"abstract":"This paper develops an optimization framework based on evolutionary computation for the multi-step prediction enhancement of Deep Learning-based Dynamic Systems simulation models. We propose using the Differential Evolution algorithm and an Autoencoder network to find the optimal arrangement that accurately models a nonlinear system. A series of experiments are performed using a nonlinear, chaotic benchmark system: the double pendulum to validate our claims. As a result, the prediction error and confidence level were increased by an average of 20% against conventional parameters selection methods. Furthermore, we found that the training stage relies less on trial and error approaches in favor of a quantitative objective function using an optimization method.","PeriodicalId":419108,"journal":{"name":"2022 8th International Conference on Mechatronics and Robotics Engineering (ICMRE)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 8th International Conference on Mechatronics and Robotics Engineering (ICMRE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMRE54455.2022.9734110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper develops an optimization framework based on evolutionary computation for the multi-step prediction enhancement of Deep Learning-based Dynamic Systems simulation models. We propose using the Differential Evolution algorithm and an Autoencoder network to find the optimal arrangement that accurately models a nonlinear system. A series of experiments are performed using a nonlinear, chaotic benchmark system: the double pendulum to validate our claims. As a result, the prediction error and confidence level were increased by an average of 20% against conventional parameters selection methods. Furthermore, we found that the training stage relies less on trial and error approaches in favor of a quantitative objective function using an optimization method.
多步动态系统学习的进化优化
针对基于深度学习的动态系统仿真模型的多步预测增强,提出了一种基于进化计算的优化框架。我们提出使用差分进化算法和自编码器网络来找到能精确模拟非线性系统的最优排列。利用非线性、混沌的双摆基准系统进行了一系列实验,以验证我们的观点。与传统的参数选择方法相比,预测误差和置信水平平均提高了20%。此外,我们发现训练阶段较少依赖于尝试和错误方法,而倾向于使用优化方法的定量目标函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信