A Biometric Identification System with Kernel SVM and Feature-level Fusion

S. Soviany, S. Puscoci, V. Sandulescu
{"title":"A Biometric Identification System with Kernel SVM and Feature-level Fusion","authors":"S. Soviany, S. Puscoci, V. Sandulescu","doi":"10.1109/ECAI50035.2020.9223188","DOIUrl":null,"url":null,"abstract":"The paper presents a biometric system with optimization for identification. The design combines 2 biometrics (fingerprint and palmprint) with feature-level functional fusion, avoiding the concatenation. Data classification is done with a kernel SVM (Support Vector Machine) model and a multi-class extension. The experimental achievements show that the performance improvements are provided by the feature-level fusion together with an optimized design of the biometric data classifier. The model can be applied in use-cases in which the identity of the individuals should be guessed only based on the biometric credential.","PeriodicalId":324813,"journal":{"name":"2020 12th International Conference on Electronics, Computers and Artificial Intelligence (ECAI)","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 12th International Conference on Electronics, Computers and Artificial Intelligence (ECAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECAI50035.2020.9223188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The paper presents a biometric system with optimization for identification. The design combines 2 biometrics (fingerprint and palmprint) with feature-level functional fusion, avoiding the concatenation. Data classification is done with a kernel SVM (Support Vector Machine) model and a multi-class extension. The experimental achievements show that the performance improvements are provided by the feature-level fusion together with an optimized design of the biometric data classifier. The model can be applied in use-cases in which the identity of the individuals should be guessed only based on the biometric credential.
基于核支持向量机和特征融合的生物特征识别系统
本文提出了一种优化的生物识别系统。该设计结合了两种生物特征(指纹和掌纹),并进行了特征级功能融合,避免了拼接。数据分类采用核支持向量机(SVM)模型和多类扩展。实验结果表明,特征级融合和生物特征数据分类器的优化设计提高了分类器的性能。该模型可应用于仅根据生物识别凭证猜测个人身份的用例中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信