{"title":"Rectified binaural ratio: A complex T-distributed feature for robust sound localization","authors":"Antoine Deleforge, F. Forbes","doi":"10.1109/EUSIPCO.2016.7760450","DOIUrl":null,"url":null,"abstract":"Most existing methods in binaural sound source localization rely on some kind of aggregation of phase- and level-difference cues in the time-frequency plane. While different aggregation schemes exist, they are often heuristic and suffer in adverse noise conditions. In this paper, we introduce the rectified binaural ratio as a new feature for sound source localization. We show that for Gaussian-process point source signals corrupted by stationary Gaussian noise, this ratio follows a complex t-distribution with explicit parameters. This new formulation provides a principled and statistically sound way to aggregate binaural features in the presence of noise. We subsequently derive two simple and efficient methods for robust relative transfer function and time-delay estimation. Experiments on heavily corrupted simulated and speech signals demonstrate the robustness of the proposed scheme.","PeriodicalId":127068,"journal":{"name":"2016 24th European Signal Processing Conference (EUSIPCO)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 24th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUSIPCO.2016.7760450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Most existing methods in binaural sound source localization rely on some kind of aggregation of phase- and level-difference cues in the time-frequency plane. While different aggregation schemes exist, they are often heuristic and suffer in adverse noise conditions. In this paper, we introduce the rectified binaural ratio as a new feature for sound source localization. We show that for Gaussian-process point source signals corrupted by stationary Gaussian noise, this ratio follows a complex t-distribution with explicit parameters. This new formulation provides a principled and statistically sound way to aggregate binaural features in the presence of noise. We subsequently derive two simple and efficient methods for robust relative transfer function and time-delay estimation. Experiments on heavily corrupted simulated and speech signals demonstrate the robustness of the proposed scheme.