Kazuki Senga, S. Shibayama, M. Sakashita, S. Zaima, O. Nakatsuka
{"title":"Further reduction of Schottky barrier height of Hf-germanide/n-Ge(001) contacts by forming epitaxial HfGe2","authors":"Kazuki Senga, S. Shibayama, M. Sakashita, S. Zaima, O. Nakatsuka","doi":"10.23919/IWJT.2019.8802901","DOIUrl":null,"url":null,"abstract":"For realizing high-performance Ge-channel metal-oxide-semiconductor field-effect transistor (MOSFET), the reduction of parasitic resistance is one of the most important issues [1] . However, it is generally difficult to reduce the contact resistivity at metal/ n -Ge interface because of its high Schottky barrier height (SBH) around 0.5–0.6 eV, in which the Fermi level of the metal is pinned at the valence band edge of Ge; well-known Fermi level pinning (FLP) phenomenon [2] , [3] . One of the considerable reasons for FLP is disorder-induced gap states owing to dangling bonds at the metal/Ge interface [4] . There are some reports in which an epitaxial metal/Ge interface alleviates FLP and the SBH can be lowered with Fe 3 Si/ n -Ge(111) [5] , Mn 3 Ge 5 / n -Ge(111) [6] , and NiGe/ n -Ge(110) contacts [7] .","PeriodicalId":441279,"journal":{"name":"2019 19th International Workshop on Junction Technology (IWJT)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th International Workshop on Junction Technology (IWJT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/IWJT.2019.8802901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
For realizing high-performance Ge-channel metal-oxide-semiconductor field-effect transistor (MOSFET), the reduction of parasitic resistance is one of the most important issues [1] . However, it is generally difficult to reduce the contact resistivity at metal/ n -Ge interface because of its high Schottky barrier height (SBH) around 0.5–0.6 eV, in which the Fermi level of the metal is pinned at the valence band edge of Ge; well-known Fermi level pinning (FLP) phenomenon [2] , [3] . One of the considerable reasons for FLP is disorder-induced gap states owing to dangling bonds at the metal/Ge interface [4] . There are some reports in which an epitaxial metal/Ge interface alleviates FLP and the SBH can be lowered with Fe 3 Si/ n -Ge(111) [5] , Mn 3 Ge 5 / n -Ge(111) [6] , and NiGe/ n -Ge(110) contacts [7] .
为了实现高性能的ge沟道金属氧化物半导体场效应晶体管(MOSFET),降低寄生电阻是最重要的问题之一[1]。然而,由于金属/ n -Ge界面的肖特基势垒高度(SBH)在0.5 ~ 0.6 eV左右,金属的费米能级被钉住在Ge的价带边缘,因此通常难以降低金属/ n -Ge界面的接触电阻率;众所周知的费米能级钉住现象[2],[3]。FLP的一个重要原因是由于金属/锗界面上的悬空键引起的无序间隙状态[4]。有一些报道称外延金属/Ge界面可以缓解FLP, Fe 3si / n -Ge(111) [5], Mn 3ge 5 / n -Ge(111)[6]和nge / n -Ge(110)接触可以降低SBH[7]。