Feature Selection for ECG Beat Classification using Genetic Algorithms

Çagla Sarvan, N. Ozkurt, Korhan Karabulut
{"title":"Feature Selection for ECG Beat Classification using Genetic Algorithms","authors":"Çagla Sarvan, N. Ozkurt, Korhan Karabulut","doi":"10.54856/jiswa.201812045","DOIUrl":null,"url":null,"abstract":"In this study, genetic algorithm method was used to select the most suitable set of features for classification of arrhythmia types of heart beats. Normal, right branch block, left branch block and pace rhythm samples of electrocardiography (ECG) signals which obtained from the MIT-BIH cardiac arrhythmia database were used in the classification. Mean, standard deviation, energy and entropy of discrete wavelet transform (DWT) coefficients were proposed as the features for the classification. By using the proposed DWT method, 16 features which have high classification accuracy were obtained among the 208 feature sets constructed from 13 different wavelet types by applying the genetic algorithm method. It was observed that the features that increase accuracy can be detected by the genetic algorithm and the feature set obtained from the coefficients of the different types of wavelets selected at different levels show higher performance than the coefficients obtained from the standard individual wavelet in the ECG arrhythmia classification.","PeriodicalId":112412,"journal":{"name":"Journal of Intelligent Systems with Applications","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems with Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54856/jiswa.201812045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this study, genetic algorithm method was used to select the most suitable set of features for classification of arrhythmia types of heart beats. Normal, right branch block, left branch block and pace rhythm samples of electrocardiography (ECG) signals which obtained from the MIT-BIH cardiac arrhythmia database were used in the classification. Mean, standard deviation, energy and entropy of discrete wavelet transform (DWT) coefficients were proposed as the features for the classification. By using the proposed DWT method, 16 features which have high classification accuracy were obtained among the 208 feature sets constructed from 13 different wavelet types by applying the genetic algorithm method. It was observed that the features that increase accuracy can be detected by the genetic algorithm and the feature set obtained from the coefficients of the different types of wavelets selected at different levels show higher performance than the coefficients obtained from the standard individual wavelet in the ECG arrhythmia classification.
基于遗传算法的心电拍分类特征选择
本研究采用遗传算法方法选择最合适的特征集进行心律失常类型的分类。采用从MIT-BIH心律失常数据库中获取的正常、右支传导阻滞、左支传导阻滞和起搏节律信号样本进行分类。提出了离散小波变换(DWT)系数的均值、标准差、能量和熵作为分类特征。采用该方法,利用遗传算法从13种不同小波类型构建的208个特征集中获得了16个分类精度较高的特征。结果表明,遗传算法可以检测到提高准确率的特征,并且在不同级别上选择不同类型小波的系数得到的特征集在心电心律失常分类中表现出比标准单个小波获得的系数更高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信