Generalized versions of turbo decoding in the framework of Bayesian networks and Pearl's belief propagation algorithm

P. Meshkat, J. Villasenor
{"title":"Generalized versions of turbo decoding in the framework of Bayesian networks and Pearl's belief propagation algorithm","authors":"P. Meshkat, J. Villasenor","doi":"10.1109/ICC.1998.682598","DOIUrl":null,"url":null,"abstract":"We use the framework of Bayesian networks to introduce generalizations of the traditional turbo decoding algorithm. We show that traditional turbo decoding represents one of many ways in which the framework of Pearl's belief propagation algorithm (1988) can be applied for decoding of turbo codes. Simulation results show that a noisy received block which does not converge using traditional turbo decoding can converge to the correct value with one or more of the generalizations introduced here. Though we consider only the case of turbo codes with two constituent decoders here, these methods can be extended in a straightforward manner to codes with larger numbers of constituent decoders.","PeriodicalId":218354,"journal":{"name":"ICC '98. 1998 IEEE International Conference on Communications. Conference Record. Affiliated with SUPERCOMM'98 (Cat. No.98CH36220)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICC '98. 1998 IEEE International Conference on Communications. Conference Record. Affiliated with SUPERCOMM'98 (Cat. No.98CH36220)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC.1998.682598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We use the framework of Bayesian networks to introduce generalizations of the traditional turbo decoding algorithm. We show that traditional turbo decoding represents one of many ways in which the framework of Pearl's belief propagation algorithm (1988) can be applied for decoding of turbo codes. Simulation results show that a noisy received block which does not converge using traditional turbo decoding can converge to the correct value with one or more of the generalizations introduced here. Though we consider only the case of turbo codes with two constituent decoders here, these methods can be extended in a straightforward manner to codes with larger numbers of constituent decoders.
基于贝叶斯网络和Pearl信念传播算法的turbo译码的广义版本
利用贝叶斯网络的框架对传统turbo译码算法进行了推广。我们表明,传统的turbo解码代表了Pearl的信念传播算法(1988)框架可用于turbo码解码的众多方法之一。仿真结果表明,采用一种或多种推广方法可以使传统turbo译码不能收敛的接收噪声块收敛到正确的值。虽然我们在这里只考虑具有两个组成解码器的涡轮码的情况,但这些方法可以以直接的方式扩展到具有更多组成解码器的代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信