{"title":"Chiplet-Package Co-Design For 2.5D Systems Using Standard ASIC CAD Tools","authors":"M. Kabir, Yarui Peng","doi":"10.1109/ASP-DAC47756.2020.9045734","DOIUrl":null,"url":null,"abstract":"Chiplet integration using 2.5D packaging is gaining popularity nowadays which enables several interesting features like heterogeneous integration and drop-in design method. In the traditional die-by-die approach of designing a 2.5D system, each chiplet is designed independently without any knowledge of the package RDLs. In this paper, we propose a Chip-Package Co-Design flow for implementing 2.5D systems using existing commercial chip design tools. Our flow encompasses 2.5D-aware partitioning suitable for SoC design, Chip-Package Floorplanning, and post-design analysis and verification of the entire 2.5D system. We also designed our own package planners to route RDL layers on top of chiplet layers. We use an ARM Cortex-M0 SoC system to illustrate our flow and compare analysis results with a monolithic 2D implementation of the same system. We also compare two different 2.5D implementations of the same SoC system following the drop-in approach. Alongside the traditional die-by-die approach, our holistic flow enables design efficiency and flexibility with accurate cross-boundary parasitic extraction and design verification.","PeriodicalId":125112,"journal":{"name":"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASP-DAC47756.2020.9045734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
Chiplet integration using 2.5D packaging is gaining popularity nowadays which enables several interesting features like heterogeneous integration and drop-in design method. In the traditional die-by-die approach of designing a 2.5D system, each chiplet is designed independently without any knowledge of the package RDLs. In this paper, we propose a Chip-Package Co-Design flow for implementing 2.5D systems using existing commercial chip design tools. Our flow encompasses 2.5D-aware partitioning suitable for SoC design, Chip-Package Floorplanning, and post-design analysis and verification of the entire 2.5D system. We also designed our own package planners to route RDL layers on top of chiplet layers. We use an ARM Cortex-M0 SoC system to illustrate our flow and compare analysis results with a monolithic 2D implementation of the same system. We also compare two different 2.5D implementations of the same SoC system following the drop-in approach. Alongside the traditional die-by-die approach, our holistic flow enables design efficiency and flexibility with accurate cross-boundary parasitic extraction and design verification.