Implementation and Computation of a Value for Generalized Characteristic Function Games

Tomasz P. Michalak, Piotr L. Szczepanski, Talal Rahwan, A. Chrobak, Simina Brânzei, M. Wooldridge, N. Jennings
{"title":"Implementation and Computation of a Value for Generalized Characteristic Function Games","authors":"Tomasz P. Michalak, Piotr L. Szczepanski, Talal Rahwan, A. Chrobak, Simina Brânzei, M. Wooldridge, N. Jennings","doi":"10.1145/2665007","DOIUrl":null,"url":null,"abstract":"Generalized characteristic function games are a variation of characteristic function games, in which the value of a coalition depends not only on the identities of its members, but also on the order in which the coalition is formed. This class of games is a useful abstraction for a number of realistic settings and economic situations, such as modeling relationships in social networks. To date, two main extensions of the Shapley value have been proposed for generalized characteristic function games: the Nowak-Radzik [1994] value and the Sánchez-Bergantiños [1997] value. In this context, the present article studies generalized characteristic function games from the point of view of implementation and computation. Specifically, the article makes two key contributions. First, building upon the mechanism by Dasgupta and Chiu [1998], we present a non-cooperative mechanism that implements both the Nowak-Radzik value and the Sánchez-Bergantiños value in Subgame-Perfect Nash Equilibria in expectations. Second, in order to facilitate an efficient computation supporting the implementation mechanism, we propose the Generalized Marginal-Contribution Nets representation for this type of game. This representation extends the results of Ieong and Shoham [2005] and Elkind et al. [2009] for characteristic function games and retains their attractive computational properties.","PeriodicalId":194623,"journal":{"name":"ACM Trans. Economics and Comput.","volume":"2013 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Economics and Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2665007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Generalized characteristic function games are a variation of characteristic function games, in which the value of a coalition depends not only on the identities of its members, but also on the order in which the coalition is formed. This class of games is a useful abstraction for a number of realistic settings and economic situations, such as modeling relationships in social networks. To date, two main extensions of the Shapley value have been proposed for generalized characteristic function games: the Nowak-Radzik [1994] value and the Sánchez-Bergantiños [1997] value. In this context, the present article studies generalized characteristic function games from the point of view of implementation and computation. Specifically, the article makes two key contributions. First, building upon the mechanism by Dasgupta and Chiu [1998], we present a non-cooperative mechanism that implements both the Nowak-Radzik value and the Sánchez-Bergantiños value in Subgame-Perfect Nash Equilibria in expectations. Second, in order to facilitate an efficient computation supporting the implementation mechanism, we propose the Generalized Marginal-Contribution Nets representation for this type of game. This representation extends the results of Ieong and Shoham [2005] and Elkind et al. [2009] for characteristic function games and retains their attractive computational properties.
广义特征函数对策值的实现与计算
广义特征函数对策是特征函数对策的一种变体,其中联盟的价值不仅取决于其成员的身份,而且取决于联盟形成的顺序。这类游戏对于许多现实背景和经济情境来说是一种有用的抽象,例如社交网络中的关系建模。迄今为止,Shapley值的两个主要扩展已经被提出用于广义特征函数对策:Nowak-Radzik[1994]值和Sánchez-Bergantiños[1997]值。在此背景下,本文从实现和计算的角度研究了广义特征函数对策。具体来说,本文做出了两个关键贡献。首先,在Dasgupta和Chiu[1998]的机制基础上,我们提出了一种非合作机制,该机制实现了期望中的子博弈-完美纳什均衡中的Nowak-Radzik值和Sánchez-Bergantiños值。其次,为了促进支持实现机制的高效计算,我们提出了这类博弈的广义边际贡献网络表示。这种表示扩展了Ieong和Shoham[2005]以及Elkind等人[2009]关于特征函数博弈的结果,并保留了它们吸引人的计算特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信