Privacy-Preserving Collaborative Filtering Using Randomized Response

H. Kikuchi, Anna Mochizuki
{"title":"Privacy-Preserving Collaborative Filtering Using Randomized Response","authors":"H. Kikuchi, Anna Mochizuki","doi":"10.1109/IMIS.2012.141","DOIUrl":null,"url":null,"abstract":"This paper proposes a new privacy-preserving recommendation method classified into a randomized perturbation scheme in which a user adds random noise to the original rating value and a server provides a disguised data to allow users to predict rating value for unseen items. The proposed scheme performs perturbation in randomized response scheme, which preserves higher degree of privacy than that of additive perturbation. To address the accuracy reduction of the randomized response, the proposed scheme uses a posterior probability distribution function, derived from Bayes' estimation to reconstruction of the original distribution, to revise the similarity between items computed from the disguised matrix. A simple experiment shows the accuracy improvement of the proposed scheme.","PeriodicalId":290976,"journal":{"name":"2012 Sixth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Sixth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMIS.2012.141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

This paper proposes a new privacy-preserving recommendation method classified into a randomized perturbation scheme in which a user adds random noise to the original rating value and a server provides a disguised data to allow users to predict rating value for unseen items. The proposed scheme performs perturbation in randomized response scheme, which preserves higher degree of privacy than that of additive perturbation. To address the accuracy reduction of the randomized response, the proposed scheme uses a posterior probability distribution function, derived from Bayes' estimation to reconstruction of the original distribution, to revise the similarity between items computed from the disguised matrix. A simple experiment shows the accuracy improvement of the proposed scheme.
基于随机响应的隐私保护协同过滤
本文提出了一种新的隐私保护推荐方法,将其分类为随机扰动方案,其中用户在原始评分值中加入随机噪声,服务器提供伪装数据,允许用户预测未见项目的评分值。该方案在随机响应方案中进行摄动,比加性摄动保留了更高的隐私度。为了解决随机响应精度降低的问题,该方案使用由贝叶斯估计得到的后验概率分布函数来重建原始分布,以修正由伪装矩阵计算的项目之间的相似度。一个简单的实验表明,该方案提高了精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信