Shortest path problems on stochastic graphs: a neuro dynamic programming approach

M. Baglietto, G. Battistelli, F. Vitali, R. Zoppoli
{"title":"Shortest path problems on stochastic graphs: a neuro dynamic programming approach","authors":"M. Baglietto, G. Battistelli, F. Vitali, R. Zoppoli","doi":"10.1109/CDC.2003.1272268","DOIUrl":null,"url":null,"abstract":"The shortest path problem on stochastic graphs is addressed. A stochastic optimal control problem is stated, for which dynamic programming can be used. The complexity of the problem leads us to look for a suboptimal solution making use of neural networks to approximate the cost-to-go function. By introducing the concept of \"frontier\", an alternative technique is given, for which any feasible policy leads to the destination node. Moreover by using a suitable algorithm, any approximation of the can be used to obtain a proper policy. Barren's results suggest the method might not incur the \"curse of dimensionality\".","PeriodicalId":371853,"journal":{"name":"42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2003.1272268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

The shortest path problem on stochastic graphs is addressed. A stochastic optimal control problem is stated, for which dynamic programming can be used. The complexity of the problem leads us to look for a suboptimal solution making use of neural networks to approximate the cost-to-go function. By introducing the concept of "frontier", an alternative technique is given, for which any feasible policy leads to the destination node. Moreover by using a suitable algorithm, any approximation of the can be used to obtain a proper policy. Barren's results suggest the method might not incur the "curse of dimensionality".
随机图上的最短路径问题:一种神经动态规划方法
研究了随机图上的最短路径问题。提出了一个随机最优控制问题,该问题可以用动态规划来解决。由于问题的复杂性,我们需要利用神经网络来近似cost-to-go函数来寻找次优解。通过引入“边界”的概念,给出了一种替代技术,其中任何可行的策略都通向目标节点。此外,通过使用合适的算法,任何近似都可以用来获得合适的策略。巴伦的研究结果表明,这种方法可能不会招致“维度诅咒”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信