Short term load forecasting using semi-parametric method and support vector machines

J. Jordaan, A. Ukil
{"title":"Short term load forecasting using semi-parametric method and support vector machines","authors":"J. Jordaan, A. Ukil","doi":"10.1109/AFRCON.2009.5308213","DOIUrl":null,"url":null,"abstract":"Accurate short term load forecasting plays a very important role in power system management. As electrical load data is highly non-linear in nature, in the proposed approach, we first separate out the linear and the non-linear parts, and then forecast the load using the non-linear part only. The Semi-parametric spectral estimation method is used to decompose a load data signal into a harmonic linear signal model and a non-linear trend. A support vector machine is then used to predict the non-linear trend. The final predicted signal is then found by adding the support vector machine predicted trend and the linear signal part. With careful determination of the linear component, the performance of the proposed method seems to be more robust than using only the raw load data, and in many cases the predicted signal of the proposed method is more accurate when we have only a small training set.","PeriodicalId":122830,"journal":{"name":"AFRICON 2009","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AFRICON 2009","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AFRCON.2009.5308213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Accurate short term load forecasting plays a very important role in power system management. As electrical load data is highly non-linear in nature, in the proposed approach, we first separate out the linear and the non-linear parts, and then forecast the load using the non-linear part only. The Semi-parametric spectral estimation method is used to decompose a load data signal into a harmonic linear signal model and a non-linear trend. A support vector machine is then used to predict the non-linear trend. The final predicted signal is then found by adding the support vector machine predicted trend and the linear signal part. With careful determination of the linear component, the performance of the proposed method seems to be more robust than using only the raw load data, and in many cases the predicted signal of the proposed method is more accurate when we have only a small training set.
基于半参数方法和支持向量机的短期负荷预测
准确的短期负荷预测在电力系统管理中起着非常重要的作用。由于电力负荷数据本质上是高度非线性的,在本文提出的方法中,我们首先将线性和非线性部分分离出来,然后仅使用非线性部分预测负荷。采用半参数谱估计方法将负荷数据信号分解为谐波线性信号模型和非线性趋势信号模型。然后使用支持向量机来预测非线性趋势。然后将支持向量机预测的趋势和线性信号部分相加,得到最终的预测信号。通过仔细确定线性分量,所提出的方法的性能似乎比仅使用原始负载数据更具鲁棒性,并且在许多情况下,当我们只有一个小的训练集时,所提出的方法的预测信号更准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信