Parallelism on Hybrid Metaheuristics for Vector Autoregression Models

A. Castaño, J. Cuenca, José-Matías Cutillas-Lozano, D. Giménez, J. López-Espín, A. Pérez-Bernabeu
{"title":"Parallelism on Hybrid Metaheuristics for Vector Autoregression Models","authors":"A. Castaño, J. Cuenca, José-Matías Cutillas-Lozano, D. Giménez, J. López-Espín, A. Pérez-Bernabeu","doi":"10.1109/HPCS.2018.00134","DOIUrl":null,"url":null,"abstract":"Vector Autoregression Models are multi-equation models that linearly describe the simultaneous interactions and behavior among a group of variables, using only their own past. They have been traditionally used in finance and econometrics, but, with the arrival of Big Data, huge amounts of data are being collected in numerous fields and their use for other fields is being considered. Tools are available for these models, but the huge amount of data makes it necessary to exploit High¬Performance Computing for the acceleration of methods to obtain the models. This paper considers a matrix formulation to represent time dependencies, and the solution of the optimization problem generated is approached through hybrid metaheuristics. The parameterized, parallel implementation of the metaheuristics and the matrix formulation ease the exploitation of multilevel shared-memory parallelism.","PeriodicalId":308138,"journal":{"name":"2018 International Conference on High Performance Computing & Simulation (HPCS)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on High Performance Computing & Simulation (HPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCS.2018.00134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Vector Autoregression Models are multi-equation models that linearly describe the simultaneous interactions and behavior among a group of variables, using only their own past. They have been traditionally used in finance and econometrics, but, with the arrival of Big Data, huge amounts of data are being collected in numerous fields and their use for other fields is being considered. Tools are available for these models, but the huge amount of data makes it necessary to exploit High¬Performance Computing for the acceleration of methods to obtain the models. This paper considers a matrix formulation to represent time dependencies, and the solution of the optimization problem generated is approached through hybrid metaheuristics. The parameterized, parallel implementation of the metaheuristics and the matrix formulation ease the exploitation of multilevel shared-memory parallelism.
向量自回归模型混合元启发式的并行性
向量自回归模型是多方程模型,它线性地描述一组变量之间的同时相互作用和行为,只使用它们自己的过去。它们传统上用于金融和计量经济学,但是,随着大数据的到来,在许多领域收集了大量数据,并且正在考虑将它们用于其他领域。这些模型的工具是可用的,但是大量的数据使得有必要利用高性能计算来加速获得模型的方法。本文考虑了一种表示时间相关性的矩阵形式,并采用混合元启发式方法对生成的优化问题进行了求解。元启发式的参数化、并行化实现和矩阵公式简化了多级共享内存并行性的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信