Fractional Multiset Coherent Super-Resolution Representation for Low Resolution Face Recognition

Yunhao Yuan, Jin Li, Yun Li, Jipeng Qiang, Yi Zhu, Yuequan Yang, Xiaobo Shen
{"title":"Fractional Multiset Coherent Super-Resolution Representation for Low Resolution Face Recognition","authors":"Yunhao Yuan, Jin Li, Yun Li, Jipeng Qiang, Yi Zhu, Yuequan Yang, Xiaobo Shen","doi":"10.1109/ccis57298.2022.10016425","DOIUrl":null,"url":null,"abstract":"In this paper, we address the problem of multiple resolution simultaneous learning in the limited training samples or noise disturbance cases and propose a novel fractional multiset partial least squares (FMPLS) approach for simultaneously dealing with multiset high dimensional data. The proposed FMPLS reconstructs the sample covariance matrices by fractional order spectral decomposition. Through using this FMPLS as a tool, we further present a new fractional multiset coherent super-resolution representation (FMCSR) method for low-resolution face recognition. Experimental results on two benchmark face databases demonstrate the effectiveness of the proposed FMCSR method.","PeriodicalId":374660,"journal":{"name":"2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS)","volume":"133 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ccis57298.2022.10016425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we address the problem of multiple resolution simultaneous learning in the limited training samples or noise disturbance cases and propose a novel fractional multiset partial least squares (FMPLS) approach for simultaneously dealing with multiset high dimensional data. The proposed FMPLS reconstructs the sample covariance matrices by fractional order spectral decomposition. Through using this FMPLS as a tool, we further present a new fractional multiset coherent super-resolution representation (FMCSR) method for low-resolution face recognition. Experimental results on two benchmark face databases demonstrate the effectiveness of the proposed FMCSR method.
低分辨率人脸识别的分数多集相干超分辨率表示
在本文中,我们解决了在有限训练样本或噪声干扰情况下的多分辨率同时学习问题,并提出了一种新的分数阶多集偏最小二乘(FMPLS)方法来同时处理多集高维数据。该方法通过分数阶谱分解重构样本协方差矩阵。以此为工具,我们进一步提出了一种用于低分辨率人脸识别的分数阶多集相干超分辨率表示(FMCSR)方法。在两个基准人脸数据库上的实验结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信