{"title":"High-speed electromagnetic field simulation by HIE-FDTD method with GPGPU","authors":"M. Unno, H. Asai","doi":"10.1109/EDAPS.2010.5683040","DOIUrl":null,"url":null,"abstract":"The HIE(Hybrid Implicit-Explicit)-FDTD method is very useful for the simulation of computational domain with thin cells. This paper describes the HIE-FDTD method with GPGPU(General Purpose computing on Graphic Processing Unit) for massively parallel electromagnetic field simulation. First, the properties of the HIE-FDTD method are explained. Next, 3D HIE-FDTD method with CUDA is implemented. Finally, it is shown that the performance of the HIE-FDTD method by GPGPU is much superior to the HIE-FDTD method with single CPU.","PeriodicalId":185326,"journal":{"name":"2010 IEEE Electrical Design of Advanced Package & Systems Symposium","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Electrical Design of Advanced Package & Systems Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDAPS.2010.5683040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The HIE(Hybrid Implicit-Explicit)-FDTD method is very useful for the simulation of computational domain with thin cells. This paper describes the HIE-FDTD method with GPGPU(General Purpose computing on Graphic Processing Unit) for massively parallel electromagnetic field simulation. First, the properties of the HIE-FDTD method are explained. Next, 3D HIE-FDTD method with CUDA is implemented. Finally, it is shown that the performance of the HIE-FDTD method by GPGPU is much superior to the HIE-FDTD method with single CPU.