Object sensing, tracking and reconstructing using Extended Kalman Filter algorithm

N. Illangarathne, M. Chinthaka
{"title":"Object sensing, tracking and reconstructing using Extended Kalman Filter algorithm","authors":"N. Illangarathne, M. Chinthaka","doi":"10.1109/ECTICON.2014.6839752","DOIUrl":null,"url":null,"abstract":"In today's modern world 3D modeling is used in numerous practical applications. Surveillance, Traffic Control, Driver Assistance & Biomedical imaging are few to name. Higher accuracy is vital in each application. Thus accuracy enhancing techniques are used in each case. Among many other techniques Extended Kalman Filter (EKF) is best known for its recursive least-mean square algorithm for error elimination and optimum estimation. Yet detecting and tracking of objects in an unknown territory using a mobile platform remains a challenge. The purpose of this paper is to provide a practical method for detecting, tracking and reconstructing of objects in an unknown territory with a higher accuracy using EKF.","PeriodicalId":347166,"journal":{"name":"2014 11th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTICON.2014.6839752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In today's modern world 3D modeling is used in numerous practical applications. Surveillance, Traffic Control, Driver Assistance & Biomedical imaging are few to name. Higher accuracy is vital in each application. Thus accuracy enhancing techniques are used in each case. Among many other techniques Extended Kalman Filter (EKF) is best known for its recursive least-mean square algorithm for error elimination and optimum estimation. Yet detecting and tracking of objects in an unknown territory using a mobile platform remains a challenge. The purpose of this paper is to provide a practical method for detecting, tracking and reconstructing of objects in an unknown territory with a higher accuracy using EKF.
利用扩展卡尔曼滤波算法进行目标感知、跟踪和重构
在当今的现代世界中,3D建模被用于许多实际应用中。监控、交通控制、驾驶辅助和生物医学成像等都是屈指可数的。在每个应用中,更高的精度至关重要。因此,在每种情况下都使用了精度增强技术。在许多其他技术中,扩展卡尔曼滤波(EKF)以其递归最小均方算法来消除误差和最优估计而闻名。然而,使用移动平台检测和跟踪未知领域的物体仍然是一个挑战。本文的目的是提供一种实用的方法,利用EKF以更高的精度检测、跟踪和重建未知区域的目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信