{"title":"Equalization of negative-exponential fading in saturated semiconductor optical amplifiers","authors":"K. Yiannopoulos, N. Sagias, A. Boucouvalas","doi":"10.1109/CSNDSP.2014.6923955","DOIUrl":null,"url":null,"abstract":"In this paper, we discuss the mitigation of negative-exponential fading in Optical Wireless Communication (OWC) systems. The mitigation technique involves the utilization of a semiconductor optical amplifier (SOA) whose gain saturates in normal link operation, but which also provides a power-dependent varying gain when the link experiences a fade. The unbalanced SOA operation serves towards the equalization of the signal power at its output and as a result the link fades become less severe and of reduced duration. Our analytical results predict that the fade probability can be reduced by over 90% under negative-exponential fading conditions, while the scintillation index at the SOA output is also reduced by 75% if an optimal level of received power, and therefore gain saturation, is observed. Finally, our results show that the average duration of fades can also be reduced by a significant percentage of 68% for the same level of gain saturation in the SOA.","PeriodicalId":199393,"journal":{"name":"2014 9th International Symposium on Communication Systems, Networks & Digital Sign (CSNDSP)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 9th International Symposium on Communication Systems, Networks & Digital Sign (CSNDSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSNDSP.2014.6923955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we discuss the mitigation of negative-exponential fading in Optical Wireless Communication (OWC) systems. The mitigation technique involves the utilization of a semiconductor optical amplifier (SOA) whose gain saturates in normal link operation, but which also provides a power-dependent varying gain when the link experiences a fade. The unbalanced SOA operation serves towards the equalization of the signal power at its output and as a result the link fades become less severe and of reduced duration. Our analytical results predict that the fade probability can be reduced by over 90% under negative-exponential fading conditions, while the scintillation index at the SOA output is also reduced by 75% if an optimal level of received power, and therefore gain saturation, is observed. Finally, our results show that the average duration of fades can also be reduced by a significant percentage of 68% for the same level of gain saturation in the SOA.