Diagnosis of space-induced effects on blood components by label-free optical technique and microfluidics

J. Běhal, Zhe Wang, L. Miccio, M. Mugnano, P. Memmolo, D. Pirone, V. Bianco, G. La Verde, I. Kurelac, M. Villone, M. Pugliese, C. Arrichiello, F. Ferranti, P. Muto, Silvia Mari, P. Maffettone
{"title":"Diagnosis of space-induced effects on blood components by label-free optical technique and microfluidics","authors":"J. Běhal, Zhe Wang, L. Miccio, M. Mugnano, P. Memmolo, D. Pirone, V. Bianco, G. La Verde, I. Kurelac, M. Villone, M. Pugliese, C. Arrichiello, F. Ferranti, P. Muto, Silvia Mari, P. Maffettone","doi":"10.1109/MetroAeroSpace57412.2023.10189985","DOIUrl":null,"url":null,"abstract":"A recently developed technology is presented on the combination of label-free imaging and microfluidics boosted by artificial intelligence architectures to detect morphological variations induced on biological cells as, for example, blood components. The new tool is named Holographic Image Flow Cytometry (HIFC) system where Quantitative Phase Contrast (QPMs) images are retrieved for cell flowing and rotating into a microfluidics circuit. The HIFC is based on interferometric imaging scheme thus avoiding fluorescence based sample preparations. For each cells travelling in the field of view multiple images are recorded at different rotation angles thus achieving a wide and informative dataset to identify different cell populations. Furthermore it has been proved that such technology can provide tomographic phase contrast images at single cell level. The HIFC system is able to supply about 200 images for each rotating cells. In the present manuscript the imaging system and the numerical processing will be described and the main results reviewed. Among others, the application of the technology on model lymphocytes Juckart cells irradiated at different radiation doses will be presented. Furthermore, recent improvement in the stability of the optical setup will be reported.","PeriodicalId":153093,"journal":{"name":"2023 IEEE 10th International Workshop on Metrology for AeroSpace (MetroAeroSpace)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 10th International Workshop on Metrology for AeroSpace (MetroAeroSpace)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MetroAeroSpace57412.2023.10189985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A recently developed technology is presented on the combination of label-free imaging and microfluidics boosted by artificial intelligence architectures to detect morphological variations induced on biological cells as, for example, blood components. The new tool is named Holographic Image Flow Cytometry (HIFC) system where Quantitative Phase Contrast (QPMs) images are retrieved for cell flowing and rotating into a microfluidics circuit. The HIFC is based on interferometric imaging scheme thus avoiding fluorescence based sample preparations. For each cells travelling in the field of view multiple images are recorded at different rotation angles thus achieving a wide and informative dataset to identify different cell populations. Furthermore it has been proved that such technology can provide tomographic phase contrast images at single cell level. The HIFC system is able to supply about 200 images for each rotating cells. In the present manuscript the imaging system and the numerical processing will be described and the main results reviewed. Among others, the application of the technology on model lymphocytes Juckart cells irradiated at different radiation doses will be presented. Furthermore, recent improvement in the stability of the optical setup will be reported.
利用无标记光学技术和微流体技术诊断空间对血液成分的影响
最近开发了一种技术,将无标签成像和人工智能架构推动的微流体相结合,用于检测生物细胞上诱导的形态变化,例如血液成分。新工具被命名为全息图像流式细胞术(HIFC)系统,其中定量相衬(qpm)图像被检索细胞流动和旋转到微流体电路。HIFC基于干涉成像方案,从而避免了基于荧光的样品制备。对于在视场中移动的每个细胞,以不同的旋转角度记录多个图像,从而实现广泛和信息丰富的数据集,以识别不同的细胞群。此外,该技术已被证明可以提供单细胞水平的层析相衬图像。HIFC系统能够为每个旋转单元提供大约200张图像。在本文中,将描述成像系统和数值处理,并对主要结果进行回顾。其中,将介绍该技术在不同辐射剂量照射下的淋巴细胞jukart细胞模型上的应用。此外,最近在光学装置的稳定性的改进将被报道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信