Visibility culling using plenoptic opacity functions for large volume visualization

Jinzhu Gao, Jian Huang, Han-Wei Shen, J. Kohl
{"title":"Visibility culling using plenoptic opacity functions for large volume visualization","authors":"Jinzhu Gao, Jian Huang, Han-Wei Shen, J. Kohl","doi":"10.1109/VISUAL.2003.1250391","DOIUrl":null,"url":null,"abstract":"Visibility culling has the potential to accelerate large data visualization in significant ways. Unfortunately, existing algorithms do not scale well when parallelized, and require full re-computation whenever the opacity transfer function is modified. To address these issues, we have designed a Plenoptic Opacity Function (POF) scheme to encode the view-dependent opacity of a volume block. POFs are computed off-line during a pre-processing stage, only once for each block. We show that using POFs is (i) an efficient, conservative and effective way to encode the opacity variations of a volume block for a range of views, (ii) flexible for re-use by a family of opacity transfer functions without the need for additional off-line processing, and (iii) highly scalable for use in massively parallel implementations. Our results confirm the efficacy of POFs for visibility culling in large-scale parallel volume rendering; we can interactively render the Visible Woman dataset using software ray-casting on 32 processors, with interactive modification of the opacity transfer function on-the-fly.","PeriodicalId":372131,"journal":{"name":"IEEE Visualization, 2003. VIS 2003.","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Visualization, 2003. VIS 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VISUAL.2003.1250391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

Abstract

Visibility culling has the potential to accelerate large data visualization in significant ways. Unfortunately, existing algorithms do not scale well when parallelized, and require full re-computation whenever the opacity transfer function is modified. To address these issues, we have designed a Plenoptic Opacity Function (POF) scheme to encode the view-dependent opacity of a volume block. POFs are computed off-line during a pre-processing stage, only once for each block. We show that using POFs is (i) an efficient, conservative and effective way to encode the opacity variations of a volume block for a range of views, (ii) flexible for re-use by a family of opacity transfer functions without the need for additional off-line processing, and (iii) highly scalable for use in massively parallel implementations. Our results confirm the efficacy of POFs for visibility culling in large-scale parallel volume rendering; we can interactively render the Visible Woman dataset using software ray-casting on 32 processors, with interactive modification of the opacity transfer function on-the-fly.
使用全光不透明函数进行大体积可视化的可见性剔除
可见性剔除有可能以重要的方式加速大型数据可视化。不幸的是,现有的算法在并行化时不能很好地扩展,并且每当修改不透明度传递函数时都需要完全重新计算。为了解决这些问题,我们设计了一个全光学不透明度函数(POF)方案来编码卷块的视图依赖的不透明度。在预处理阶段脱机计算pof,每个块只计算一次。我们表明,使用pof是(i)一种高效,保守和有效的方式来编码一个卷块的不透明度变化的范围内的视图,(ii)灵活的不透明度传递函数家族的重用,而不需要额外的离线处理,(iii)高度可扩展,用于大规模并行实现。我们的研究结果证实了pof在大规模并行体绘制中可见度剔除的有效性;我们可以在32个处理器上使用软件光线投射交互渲染可视女人数据集,并实时交互修改不透明度传递函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信