M. Ismaeil, A. Hassaballa, M. Laissy, Isam Eldin Kamal, F. M. Adam
{"title":"Evaluation and Strengthening of an Eight-Storey Existing Reinforced Concrete Building in Abha City, KSA","authors":"M. Ismaeil, A. Hassaballa, M. Laissy, Isam Eldin Kamal, F. M. Adam","doi":"10.31031/ACET.2019.02.000550","DOIUrl":null,"url":null,"abstract":"Saudi Arabia’s kingdom is not free from seismic tremors. It has encountered numerous quakes amid the ongoing history, and the past investigations on this field exhibited this contention. Many existing structures in Abha City have not been intended to oppose seismic forces. Moreover, it is imperative to contemplate the reaction of these structures under seismic conditions. Likewise, there is a lack in the examinations done in this field identified with Abha City. Consequently, existing structures ought to be assessed with respect to their ability for opposing expected seismic impacts before recovery works. Investigation was completed by utilizing auxiliary examination program (SAP2000) [1] with the utilization of static technique proposed by the Saudi Building Code (SBC) [2] to decide the reaction of regular multi-storey structures made of strengthened cement because of quake ground loads. Objective of this paper is to assess the execution of existing multi-storey RC working in Abha City under seismic loads. To accomplish this goal, a 3D model for eight-storey RC building was developed utilizing SAP2000 examination program, though tremor loads were determined by static technique. Outcomes got from this paper inferred that the present plan of existing structures in Abha city is dangerous for the present seismicity of Abha territory. At last, it has been verified that RC shear walls signified a truly reasonable procedure, as a fortifying method for existing RC structures, to lessen the seismic defenselessness of these structures.","PeriodicalId":163364,"journal":{"name":"Advancements in Civil Engineering & Technology","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advancements in Civil Engineering & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31031/ACET.2019.02.000550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Saudi Arabia’s kingdom is not free from seismic tremors. It has encountered numerous quakes amid the ongoing history, and the past investigations on this field exhibited this contention. Many existing structures in Abha City have not been intended to oppose seismic forces. Moreover, it is imperative to contemplate the reaction of these structures under seismic conditions. Likewise, there is a lack in the examinations done in this field identified with Abha City. Consequently, existing structures ought to be assessed with respect to their ability for opposing expected seismic impacts before recovery works. Investigation was completed by utilizing auxiliary examination program (SAP2000) [1] with the utilization of static technique proposed by the Saudi Building Code (SBC) [2] to decide the reaction of regular multi-storey structures made of strengthened cement because of quake ground loads. Objective of this paper is to assess the execution of existing multi-storey RC working in Abha City under seismic loads. To accomplish this goal, a 3D model for eight-storey RC building was developed utilizing SAP2000 examination program, though tremor loads were determined by static technique. Outcomes got from this paper inferred that the present plan of existing structures in Abha city is dangerous for the present seismicity of Abha territory. At last, it has been verified that RC shear walls signified a truly reasonable procedure, as a fortifying method for existing RC structures, to lessen the seismic defenselessness of these structures.