Option Valuation with Observable Volatility and Jump Dynamics

Peter F. Christoffersen, Bruno Feunou, Yoontae Jeon
{"title":"Option Valuation with Observable Volatility and Jump Dynamics","authors":"Peter F. Christoffersen, Bruno Feunou, Yoontae Jeon","doi":"10.2139/ssrn.2494379","DOIUrl":null,"url":null,"abstract":"Under very general conditions, the total quadratic variation of a jump-diffusion process can be decomposed into diffusive volatility and squared jump variation. We use this result to develop a new option valuation model in which the underlying asset price exhibits volatility and jump intensity dynamics. The volatility and jump intensity dynamics in the model are directly driven by model-free empirical measures of diffusive volatility and jump variation. Because the empirical measures are observed in discrete intervals, our option valuation model is cast in discrete time, allowing for straightforward filtering and estimation of the model. Our model belongs to the affine class enabling us to derive the conditional characteristic function so that option values can be computed rapidly without simulation. When estimated on S&P500 index options and returns the new model performs well compared with standard benchmarks.","PeriodicalId":370944,"journal":{"name":"University of Toronto - Rotman School of Management Research Paper Series","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"University of Toronto - Rotman School of Management Research Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2494379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

Abstract

Under very general conditions, the total quadratic variation of a jump-diffusion process can be decomposed into diffusive volatility and squared jump variation. We use this result to develop a new option valuation model in which the underlying asset price exhibits volatility and jump intensity dynamics. The volatility and jump intensity dynamics in the model are directly driven by model-free empirical measures of diffusive volatility and jump variation. Because the empirical measures are observed in discrete intervals, our option valuation model is cast in discrete time, allowing for straightforward filtering and estimation of the model. Our model belongs to the affine class enabling us to derive the conditional characteristic function so that option values can be computed rapidly without simulation. When estimated on S&P500 index options and returns the new model performs well compared with standard benchmarks.
具有可观察波动率和跳跃动力学的期权估值
在非常一般的条件下,跳跃-扩散过程的总二次变分可以分解为扩散挥发性和平方跳变分。我们利用这一结果建立了一个新的期权估值模型,其中标的资产价格表现出波动性和跳跃强度动态。模型中的波动率和跳跃强度动力学是由无模型的扩散波动率和跳跃变化的经验测度直接驱动的。由于经验测量是在离散的时间间隔内观察到的,因此我们的期权估值模型是在离散时间内进行的,允许对模型进行直接的过滤和估计。我们的模型属于仿射类,使我们能够导出条件特征函数,从而可以在不模拟的情况下快速计算期权值。当对标准普尔500指数期权和回报进行估计时,新模型与标准基准相比表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信