Efficient Signaling for Passive Memristive Crossbars to Prepare them for Spiking Neuromorphic Computing

Ali Shiri Sichani, Kishore Kumar Kadari, W. Moreno
{"title":"Efficient Signaling for Passive Memristive Crossbars to Prepare them for Spiking Neuromorphic Computing","authors":"Ali Shiri Sichani, Kishore Kumar Kadari, W. Moreno","doi":"10.1109/LAEDC54796.2022.9908216","DOIUrl":null,"url":null,"abstract":"Memristive devices act as promising emerging devices to emulate the functionalities of the synapses and neurons. The memristive crossbars provide accelerated computing for various IoT and edge computing applications. Brain-inspired computing can be exploited to overcome the von-Neuman computers bottleneck to increase energy efficiency and accelerate processing, specifically in conceptual computing. All neuro-inspired computing methods are set in two platforms, including conventional and spiking neural networks. Due to the challenge in providing efficient signaling for the spiking computing process, this manuscript focuses on developing a signaling strategy and methodology for conceptual processing over the passive memristive crossbars. The efficient signaling enables the passive memristive crossbars to be utilized for energy-efficient computing, providing high dense circuit implementation.","PeriodicalId":276855,"journal":{"name":"2022 IEEE Latin American Electron Devices Conference (LAEDC)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Latin American Electron Devices Conference (LAEDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LAEDC54796.2022.9908216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Memristive devices act as promising emerging devices to emulate the functionalities of the synapses and neurons. The memristive crossbars provide accelerated computing for various IoT and edge computing applications. Brain-inspired computing can be exploited to overcome the von-Neuman computers bottleneck to increase energy efficiency and accelerate processing, specifically in conceptual computing. All neuro-inspired computing methods are set in two platforms, including conventional and spiking neural networks. Due to the challenge in providing efficient signaling for the spiking computing process, this manuscript focuses on developing a signaling strategy and methodology for conceptual processing over the passive memristive crossbars. The efficient signaling enables the passive memristive crossbars to be utilized for energy-efficient computing, providing high dense circuit implementation.
无源记忆栅的有效信号传导为脉冲神经形态计算做准备
记忆装置是一种很有前途的新兴装置,可以模拟突触和神经元的功能。忆阻交叉条为各种物联网和边缘计算应用提供加速计算。大脑启发的计算可以用来克服冯-诺伊曼计算机的瓶颈,以提高能源效率和加速处理,特别是在概念计算方面。所有受神经启发的计算方法都设置在两个平台上,包括传统的和脉冲的神经网络。由于在为尖峰计算过程提供有效的信号方面的挑战,本文着重于开发一种用于被动记忆交叉棒上概念处理的信号策略和方法。有效的信号使无源忆阻交叉栅能够用于节能计算,提供高密度的电路实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信