Similarity based context for nonparametric scene parsing

Parvaneh Alinia, Parvin Razzaghi
{"title":"Similarity based context for nonparametric scene parsing","authors":"Parvaneh Alinia, Parvin Razzaghi","doi":"10.1109/IRANIANCEE.2017.7985282","DOIUrl":null,"url":null,"abstract":"Scene parsing is an important research area in computer vision which aims to provide semantic label for each pixel in an image. In this paper, we propose a new approach in non-parametric scene parsing. Typical non-parametric scene parsing approaches have two main steps: retrieving similar images to test image and label transferring from retrieved images to the test image. In our approach, in the label transferring step, we use an objective function in which object level and context level information are incorporated. The main contribution of this paper is to propose a new contextual term which it is adapted to the employed similarity distance measure in the retrieval stage. Also, we propose a new adaptive weighting procedure which balances the effectiveness of object-level and context level terms in the objective function. To evaluate the proposed approach, it is applied on the MSRC-21 datasets. The obtained results show that our approach outperforms comparable state-of-the-art nonparametric approaches.","PeriodicalId":161929,"journal":{"name":"2017 Iranian Conference on Electrical Engineering (ICEE)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Iranian Conference on Electrical Engineering (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRANIANCEE.2017.7985282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Scene parsing is an important research area in computer vision which aims to provide semantic label for each pixel in an image. In this paper, we propose a new approach in non-parametric scene parsing. Typical non-parametric scene parsing approaches have two main steps: retrieving similar images to test image and label transferring from retrieved images to the test image. In our approach, in the label transferring step, we use an objective function in which object level and context level information are incorporated. The main contribution of this paper is to propose a new contextual term which it is adapted to the employed similarity distance measure in the retrieval stage. Also, we propose a new adaptive weighting procedure which balances the effectiveness of object-level and context level terms in the objective function. To evaluate the proposed approach, it is applied on the MSRC-21 datasets. The obtained results show that our approach outperforms comparable state-of-the-art nonparametric approaches.
基于相似度的非参数场景分析
场景解析是计算机视觉中的一个重要研究领域,其目的是为图像中的每个像素提供语义标记。本文提出了一种新的非参数场景解析方法。典型的非参数场景分析方法有两个主要步骤:检索相似的图像到测试图像和从检索到的图像到测试图像的标签传递。在我们的方法中,在标签传递步骤中,我们使用目标函数,其中包含对象级和上下文级信息。本文的主要贡献是提出了一个新的上下文术语,它适用于在检索阶段使用的相似距离度量。此外,我们还提出了一种新的自适应加权方法来平衡目标函数中对象级项和上下文级项的有效性。为了评估所提出的方法,将其应用于MSRC-21数据集。获得的结果表明,我们的方法优于可比较的最先进的非参数方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信