{"title":"Optimal body bias selection for leakage improvement and process compensation over different technology generations","authors":"C. Neau, K. Roy","doi":"10.1109/LPE.2003.1231846","DOIUrl":null,"url":null,"abstract":"We present techniques to determine the optimal body bias (forward or reverse) to minimize leakage current and compensate process variations in scaled CMOS technologies. A circuit trades off sub-threshold leakage with band-to-band tunneling leakage at the source/drain junctions to determine the optimal substrate bias for different technology generations and under process variations. Using optimal body bias results in 43% and 42% savings in leakage for predictive 70 nm and 50 nm NMOS devices, respectively. This technique also reduces the effects of die-to-die and intra-die process variations in transistor length and supply voltage by 43% and 60%, respectively, in 50 nm NMOS devices, resulting in improved yield.","PeriodicalId":355883,"journal":{"name":"Proceedings of the 2003 International Symposium on Low Power Electronics and Design, 2003. ISLPED '03.","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"115","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2003 International Symposium on Low Power Electronics and Design, 2003. ISLPED '03.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LPE.2003.1231846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 115
Abstract
We present techniques to determine the optimal body bias (forward or reverse) to minimize leakage current and compensate process variations in scaled CMOS technologies. A circuit trades off sub-threshold leakage with band-to-band tunneling leakage at the source/drain junctions to determine the optimal substrate bias for different technology generations and under process variations. Using optimal body bias results in 43% and 42% savings in leakage for predictive 70 nm and 50 nm NMOS devices, respectively. This technique also reduces the effects of die-to-die and intra-die process variations in transistor length and supply voltage by 43% and 60%, respectively, in 50 nm NMOS devices, resulting in improved yield.