{"title":"Combined wheel-slip control and torque blending using MPC","authors":"C. Satzger, R. Castro","doi":"10.1109/ICCVE.2014.7297621","DOIUrl":null,"url":null,"abstract":"This article is concerned with the design of braking control systems for electric vehicles endowed with redundant braking actuators, i.e., with friction brakes and wheel-individual electric motors. Facing the challenge to optimally split the braking torque between these two actuators, a unified model predictive control (MPC) algorithm is presented here. The proposed algorithm unifies the wheel slip controller and the torque blending functions into a single framework. The capability of handling energy performance metrics, actuator constraints and dynamics, represents the main advantages of this approach. Simulation studies demonstrate that, in comparison with state-of-art solutions, the proposed control strategy is able to improve the wheel slip and torque tracking by more than 20%, with minor penalization in the energy recuperation.","PeriodicalId":171304,"journal":{"name":"2014 International Conference on Connected Vehicles and Expo (ICCVE)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Connected Vehicles and Expo (ICCVE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCVE.2014.7297621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
This article is concerned with the design of braking control systems for electric vehicles endowed with redundant braking actuators, i.e., with friction brakes and wheel-individual electric motors. Facing the challenge to optimally split the braking torque between these two actuators, a unified model predictive control (MPC) algorithm is presented here. The proposed algorithm unifies the wheel slip controller and the torque blending functions into a single framework. The capability of handling energy performance metrics, actuator constraints and dynamics, represents the main advantages of this approach. Simulation studies demonstrate that, in comparison with state-of-art solutions, the proposed control strategy is able to improve the wheel slip and torque tracking by more than 20%, with minor penalization in the energy recuperation.