The preference of Fuzzy Wavelet Neural Network to ANFIS in identification of nonlinear dynamic plants with fast local variation

M. Davanipour, M. Zekri, F. Sheikholeslam
{"title":"The preference of Fuzzy Wavelet Neural Network to ANFIS in identification of nonlinear dynamic plants with fast local variation","authors":"M. Davanipour, M. Zekri, F. Sheikholeslam","doi":"10.1109/IRANIANCEE.2010.5506998","DOIUrl":null,"url":null,"abstract":"This paper presents a Fuzzy Wavelet Neural Network (FWNN) for identification of a system with fast local variation. The FWNN combines wavelet theory with fuzzy logic and neural networks. An effective clustering algorithm is used to initialize the parameters of the FWNN. Learning fuzzy rules in this FWNN is based on gradient decent method. The performance of the FWNN structure is illustrated by applying to a nonlinear dynamic plant which has fast local variation then compared with Adaptive Neuro-Fuzzy Inference System (ANFIS) model. Simulation results indicate remarkable capabilities of the proposed identification method for plants with fast local variation.","PeriodicalId":282587,"journal":{"name":"2010 18th Iranian Conference on Electrical Engineering","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 18th Iranian Conference on Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRANIANCEE.2010.5506998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper presents a Fuzzy Wavelet Neural Network (FWNN) for identification of a system with fast local variation. The FWNN combines wavelet theory with fuzzy logic and neural networks. An effective clustering algorithm is used to initialize the parameters of the FWNN. Learning fuzzy rules in this FWNN is based on gradient decent method. The performance of the FWNN structure is illustrated by applying to a nonlinear dynamic plant which has fast local variation then compared with Adaptive Neuro-Fuzzy Inference System (ANFIS) model. Simulation results indicate remarkable capabilities of the proposed identification method for plants with fast local variation.
模糊小波神经网络在快速局部变化非线性动态对象识别中的优越性
提出了一种用于快速局部变化系统辨识的模糊小波神经网络(FWNN)。FWNN将小波理论与模糊逻辑和神经网络相结合。采用一种有效的聚类算法对FWNN的参数进行初始化。该FWNN的模糊规则学习基于梯度体面法。通过对具有快速局部变化的非线性动态对象的分析,说明了FWNN结构的性能,并与自适应神经模糊推理系统(ANFIS)模型进行了比较。仿真结果表明,该方法对具有快速局部变异的植物具有较好的识别能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信