Predicting Google’s Stock Price with LSTM Model

Tianlei Zhu, Yuexin Liao, Zheng Tao
{"title":"Predicting Google’s Stock Price with LSTM Model","authors":"Tianlei Zhu, Yuexin Liao, Zheng Tao","doi":"10.26689/pbes.v5i5.4361","DOIUrl":null,"url":null,"abstract":"Stock market has a profound impact on the market economy, Hence, the prediction of future movement of stocks is of great significance to investors. Therefore, an efficient prediction system can solve this problem to a great extent. In this paper, we used the stock price of Google Inc. as a prediction object, selected 3810 adjusted closing prices, and used long short-term memory (LSTM) method to predict the future price trend of the stock. We built a three-layer LSTM model and divided the entire data into a test set and a training set according to the ratio of 8 to 2. The final results show that while the LSTM model can predict the stock trend of Google Inc. very well, it cannot predict the specific price accurately.","PeriodicalId":310426,"journal":{"name":"Proceedings of Business and Economic Studies","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Business and Economic Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26689/pbes.v5i5.4361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Stock market has a profound impact on the market economy, Hence, the prediction of future movement of stocks is of great significance to investors. Therefore, an efficient prediction system can solve this problem to a great extent. In this paper, we used the stock price of Google Inc. as a prediction object, selected 3810 adjusted closing prices, and used long short-term memory (LSTM) method to predict the future price trend of the stock. We built a three-layer LSTM model and divided the entire data into a test set and a training set according to the ratio of 8 to 2. The final results show that while the LSTM model can predict the stock trend of Google Inc. very well, it cannot predict the specific price accurately.
用LSTM模型预测谷歌股价
股票市场对市场经济有着深远的影响,因此,对股票未来走势的预测对投资者来说意义重大。因此,一个高效的预测系统可以在很大程度上解决这一问题。本文以Google Inc.的股价作为预测对象,选取3810个调整后的收盘价,采用长短期记忆(LSTM)方法预测该股票未来的价格走势。我们构建了一个三层LSTM模型,并将整个数据按照8:2的比例划分为一个测试集和一个训练集。最终结果表明,LSTM模型可以很好地预测Google Inc.的股票走势,但不能准确预测具体价格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信