H. Fonseka, P. Caroff, Y. Guo, F. Wang, J. Wong-Leung, H. Tan, C. Jagadish
{"title":"InP-based radial heterostructures grown on [100] nanowires","authors":"H. Fonseka, P. Caroff, Y. Guo, F. Wang, J. Wong-Leung, H. Tan, C. Jagadish","doi":"10.1109/COMMAD.2014.7038682","DOIUrl":null,"url":null,"abstract":"InP-InxGa(1-x)As-InP quantum well tube (QWT) structures are grown on InP nanowires that are [100] oriented. The In mole fraction, x is varied between 0 and 1. The QWTs grown on the facets of the [100] nanowires that have {100} and {011} side facets forming an octagonal cross-section, are found to be highly non-uniform. Bright emission is observed at room temperature from these QWTs. Band-gap tunability in the near to mid-infrared region is achieved by controlling the thickness and composition of the quantum well.","PeriodicalId":175863,"journal":{"name":"2014 Conference on Optoelectronic and Microelectronic Materials & Devices","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Conference on Optoelectronic and Microelectronic Materials & Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMMAD.2014.7038682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
InP-InxGa(1-x)As-InP quantum well tube (QWT) structures are grown on InP nanowires that are [100] oriented. The In mole fraction, x is varied between 0 and 1. The QWTs grown on the facets of the [100] nanowires that have {100} and {011} side facets forming an octagonal cross-section, are found to be highly non-uniform. Bright emission is observed at room temperature from these QWTs. Band-gap tunability in the near to mid-infrared region is achieved by controlling the thickness and composition of the quantum well.