Unified radix-4 multiplier for GF(p) and GF(2^n)

Lai-Sze Au, N. Burgess
{"title":"Unified radix-4 multiplier for GF(p) and GF(2^n)","authors":"Lai-Sze Au, N. Burgess","doi":"10.1109/ASAP.2003.1212846","DOIUrl":null,"url":null,"abstract":"We describe a scalable unified architecture for Montgomery multiplication over either of the finite fields GF(p) and GF(2n). This architecture has the advantage of possessing a new redundant binary adder that supports carry-save additions under either of the Galois fields without the need for an external control signal to specify which field is to be used. Its main advantage over previously reported dual field multiplier is that a control signal which is broadcast to all cells to suppress carries under GF(2n is not needed. Consequently, larger multipliers can be synthesised whose pipelined speed is independent of the buffering required for the control signal.","PeriodicalId":261592,"journal":{"name":"Proceedings IEEE International Conference on Application-Specific Systems, Architectures, and Processors. ASAP 2003","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE International Conference on Application-Specific Systems, Architectures, and Processors. ASAP 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAP.2003.1212846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

We describe a scalable unified architecture for Montgomery multiplication over either of the finite fields GF(p) and GF(2n). This architecture has the advantage of possessing a new redundant binary adder that supports carry-save additions under either of the Galois fields without the need for an external control signal to specify which field is to be used. Its main advantage over previously reported dual field multiplier is that a control signal which is broadcast to all cells to suppress carries under GF(2n is not needed. Consequently, larger multipliers can be synthesised whose pipelined speed is independent of the buffering required for the control signal.
GF(p)和GF(2^n)的统一基数-4乘子
我们描述了在有限域GF(p)和GF(2n)上任意一个Montgomery乘法的可伸缩统一架构。这种体系结构的优点是拥有一个新的冗余二进制加法器,该加法器支持任意一个伽罗瓦字段下的免进位加法,而不需要外部控制信号来指定要使用哪个字段。与先前报道的双场倍增器相比,它的主要优点是不需要在GF(2n)下向所有细胞广播抑制携带的控制信号。因此,可以合成更大的乘法器,其流水线速度与控制信号所需的缓冲无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信