G. Kindlmann, R. Whitaker, T. Tasdizen, Torsten Möller
{"title":"Curvature-based transfer functions for direct volume rendering: methods and applications","authors":"G. Kindlmann, R. Whitaker, T. Tasdizen, Torsten Möller","doi":"10.1109/VISUAL.2003.1250414","DOIUrl":null,"url":null,"abstract":"Direct volume rendering of scalar fields uses a transfer function to map locally measured data properties to opacities and colors. The domain of the transfer function is typically the one-dimensional space of scalar data values. This paper advances the use of curvature information in multi-dimensional transfer functions, with a methodology for computing high-quality curvature measurements. The proposed methodology combines an implicit formulation of curvature with convolution-based reconstruction of the field. We give concrete guidelines for implementing the methodology, and illustrate the importance of choosing accurate filters for computing derivatives with convolution. Curvature-based transfer functions are shown to extend the expressivity and utility of volume rendering through contributions in three different application areas: nonphotorealistic volume rendering, surface smoothing via anisotropic diffusion, and visualization of isosurface uncertainty.","PeriodicalId":372131,"journal":{"name":"IEEE Visualization, 2003. VIS 2003.","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"439","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Visualization, 2003. VIS 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VISUAL.2003.1250414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 439
Abstract
Direct volume rendering of scalar fields uses a transfer function to map locally measured data properties to opacities and colors. The domain of the transfer function is typically the one-dimensional space of scalar data values. This paper advances the use of curvature information in multi-dimensional transfer functions, with a methodology for computing high-quality curvature measurements. The proposed methodology combines an implicit formulation of curvature with convolution-based reconstruction of the field. We give concrete guidelines for implementing the methodology, and illustrate the importance of choosing accurate filters for computing derivatives with convolution. Curvature-based transfer functions are shown to extend the expressivity and utility of volume rendering through contributions in three different application areas: nonphotorealistic volume rendering, surface smoothing via anisotropic diffusion, and visualization of isosurface uncertainty.