C. Braojos, M. Rebollo-Hernanz, Silvia Cañas, Y. Aguilera, S. Arribas, M. Martín-Cabrejas, V. Benítez
{"title":"Hypolipidemic Properties of Cocoa and Coffee By-Products after Simulated Gastrointestinal Digestion: A Comparative Approach","authors":"C. Braojos, M. Rebollo-Hernanz, Silvia Cañas, Y. Aguilera, S. Arribas, M. Martín-Cabrejas, V. Benítez","doi":"10.3390/ecb2021-10288","DOIUrl":null,"url":null,"abstract":"New sustainable ingredients with beneficial properties for health are a main goal for the food industry. In this regard, the cocoa shell (CS) and the coffee pulp (CP), by-products from the coffee and cocoa industry produced worldwide in large amounts, are suitable candidates. We previously stated that these by-products are sources of phytochemicals and dietary fiber with potential hypolipidemic properties. This study aimed to assess the hypolipidemic properties of CS and CP after simulated gastrointestinal digestion. The capacities of the residual fraction of each digestion phase to bind bile salts and cholesterol and inhibit the lipase activity were measured to establish the in vitro hypolipidemic properties of both by-products. Furthermore, the digested fractions’ effect on lipid accumulation was evaluated in the HepG2 cell line. From results, the CS showed a higher ability to bind cholesterol (4–24%) and bile salts (2–3%) in gastric and colonic phases. Meanwhile, during the gastrointestinal phase, CP showed a greater capacity to bind cholesterol (1–13%) and bile salts (2%). The capacity to inhibit lipase activity was more accentuated in the CS in gastrointestinal digestion (16%) whereas during gastric digestion in the CP (11%). Likewise, the digested fractions of both by-products (100 µg/mL) significantly alleviated the accumulation of fat (17–20%) in the HepG2 cell model after the stimulation of cells with palmitic acid. This comparative approach suggests that both by-products exhibit similar hypolipidemic properties after in vitro digestion. This research supports the revalorization of cocoa and coffee by-products as food ingredients and nutraceuticals with potential health benefits in preventing chronic metabolic diseases. due to their remarkable hypolipidemic properties.","PeriodicalId":400770,"journal":{"name":"Biology and Life Sciences Forum","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology and Life Sciences Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ecb2021-10288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
New sustainable ingredients with beneficial properties for health are a main goal for the food industry. In this regard, the cocoa shell (CS) and the coffee pulp (CP), by-products from the coffee and cocoa industry produced worldwide in large amounts, are suitable candidates. We previously stated that these by-products are sources of phytochemicals and dietary fiber with potential hypolipidemic properties. This study aimed to assess the hypolipidemic properties of CS and CP after simulated gastrointestinal digestion. The capacities of the residual fraction of each digestion phase to bind bile salts and cholesterol and inhibit the lipase activity were measured to establish the in vitro hypolipidemic properties of both by-products. Furthermore, the digested fractions’ effect on lipid accumulation was evaluated in the HepG2 cell line. From results, the CS showed a higher ability to bind cholesterol (4–24%) and bile salts (2–3%) in gastric and colonic phases. Meanwhile, during the gastrointestinal phase, CP showed a greater capacity to bind cholesterol (1–13%) and bile salts (2%). The capacity to inhibit lipase activity was more accentuated in the CS in gastrointestinal digestion (16%) whereas during gastric digestion in the CP (11%). Likewise, the digested fractions of both by-products (100 µg/mL) significantly alleviated the accumulation of fat (17–20%) in the HepG2 cell model after the stimulation of cells with palmitic acid. This comparative approach suggests that both by-products exhibit similar hypolipidemic properties after in vitro digestion. This research supports the revalorization of cocoa and coffee by-products as food ingredients and nutraceuticals with potential health benefits in preventing chronic metabolic diseases. due to their remarkable hypolipidemic properties.