Optimal non-symmetric Fokker-Planck equation for the convergence to a given equilibrium

A. Arnold, Beatrice Signorello
{"title":"Optimal non-symmetric Fokker-Planck equation for the convergence to a given equilibrium","authors":"A. Arnold, Beatrice Signorello","doi":"10.3934/krm.2022009","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>This paper is concerned with finding Fokker-Planck equations in <inline-formula><tex-math id=\"M1\">\\begin{document}$ \\mathbb{R}^d $\\end{document}</tex-math></inline-formula> with the fastest exponential decay towards a given equilibrium. For a prescribed, anisotropic Gaussian we determine a non-symmetric Fokker-Planck equation with linear drift that shows the highest exponential decay rate for the convergence of its solutions towards equilibrium. At the same time it has to allow for a decay estimate with a multiplicative constant arbitrarily close to its infimum.</p><p style='text-indent:20px;'>Such an \"optimal\" Fokker-Planck equation is constructed explicitly with a diffusion matrix of rank one, hence being hypocoercive. In an <inline-formula><tex-math id=\"M2\">\\begin{document}$ L^2 $\\end{document}</tex-math></inline-formula>–analysis, we find that the maximum decay rate equals the maximum eigenvalue of the inverse covariance matrix, and that the infimum of the attainable multiplicative constant is 1, corresponding to the high-rotational limit in the Fokker-Planck drift. This analysis is complemented with numerical illustrations in 2D, and it includes a case study for time-dependent coefficient matrices.</p>","PeriodicalId":393586,"journal":{"name":"Kinetic &amp; Related Models","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kinetic &amp; Related Models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/krm.2022009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper is concerned with finding Fokker-Planck equations in \begin{document}$ \mathbb{R}^d $\end{document} with the fastest exponential decay towards a given equilibrium. For a prescribed, anisotropic Gaussian we determine a non-symmetric Fokker-Planck equation with linear drift that shows the highest exponential decay rate for the convergence of its solutions towards equilibrium. At the same time it has to allow for a decay estimate with a multiplicative constant arbitrarily close to its infimum.

Such an "optimal" Fokker-Planck equation is constructed explicitly with a diffusion matrix of rank one, hence being hypocoercive. In an \begin{document}$ L^2 $\end{document}–analysis, we find that the maximum decay rate equals the maximum eigenvalue of the inverse covariance matrix, and that the infimum of the attainable multiplicative constant is 1, corresponding to the high-rotational limit in the Fokker-Planck drift. This analysis is complemented with numerical illustrations in 2D, and it includes a case study for time-dependent coefficient matrices.

收敛到给定平衡点的最优非对称Fokker-Planck方程
This paper is concerned with finding Fokker-Planck equations in \begin{document}$ \mathbb{R}^d $\end{document} with the fastest exponential decay towards a given equilibrium. For a prescribed, anisotropic Gaussian we determine a non-symmetric Fokker-Planck equation with linear drift that shows the highest exponential decay rate for the convergence of its solutions towards equilibrium. At the same time it has to allow for a decay estimate with a multiplicative constant arbitrarily close to its infimum.Such an "optimal" Fokker-Planck equation is constructed explicitly with a diffusion matrix of rank one, hence being hypocoercive. In an \begin{document}$ L^2 $\end{document}–analysis, we find that the maximum decay rate equals the maximum eigenvalue of the inverse covariance matrix, and that the infimum of the attainable multiplicative constant is 1, corresponding to the high-rotational limit in the Fokker-Planck drift. This analysis is complemented with numerical illustrations in 2D, and it includes a case study for time-dependent coefficient matrices.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信