{"title":"Nanometer-scale patterning on titanium thin film with local oxidation of scanning probe microscope","authors":"J. Sheu, Cheng C. Chen, S. P. Yeh, H. Chou","doi":"10.1109/NANO.2002.1032266","DOIUrl":null,"url":null,"abstract":"Nanometer-scale oxidized patterns were fabricated on titanium (Ti) films deposited on silicon wafer using an atomic force microscope (AFM) based field-induced oxidation process. Titanium surfaces can be oxidized at room temperature under ambient conditions with the tip of an atomic force microscope when applying a negative bias voltage between surface and tip. We determined that the size of the oxide patterns was dependent on tip-bias voltages, scanning speed, and relative humidity. We found that the attainable oxide features of titanium patterns were improved by increasing the scanning speed, tip-bias voltage and also by lowering the relative humidity. Fabrication of nanometer-scale structures on the Ti-metal film by AFM-based field-induced oxidation and subsequent chemical wet etching of the titanium in a dilute hydrofluoric acid (HF) was demonstrated. Patterns of Ti lines below 100 nm in width were successfully fabricated by the above-described method.","PeriodicalId":408575,"journal":{"name":"Proceedings of the 2nd IEEE Conference on Nanotechnology","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd IEEE Conference on Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2002.1032266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Nanometer-scale oxidized patterns were fabricated on titanium (Ti) films deposited on silicon wafer using an atomic force microscope (AFM) based field-induced oxidation process. Titanium surfaces can be oxidized at room temperature under ambient conditions with the tip of an atomic force microscope when applying a negative bias voltage between surface and tip. We determined that the size of the oxide patterns was dependent on tip-bias voltages, scanning speed, and relative humidity. We found that the attainable oxide features of titanium patterns were improved by increasing the scanning speed, tip-bias voltage and also by lowering the relative humidity. Fabrication of nanometer-scale structures on the Ti-metal film by AFM-based field-induced oxidation and subsequent chemical wet etching of the titanium in a dilute hydrofluoric acid (HF) was demonstrated. Patterns of Ti lines below 100 nm in width were successfully fabricated by the above-described method.