Hypersonic Vehicle Trajectory Classification Using Convolutional Neural Network

Nikolai E. Gaiduchenko, P. Gritsyk
{"title":"Hypersonic Vehicle Trajectory Classification Using Convolutional Neural Network","authors":"Nikolai E. Gaiduchenko, P. Gritsyk","doi":"10.1109/EnT47717.2019.9030537","DOIUrl":null,"url":null,"abstract":"This paper proposes a Hypersonic Convolutional Neural Network (HCNN) for hypersonic aircraft classification based on a vehicle flight path. The experiments on synthetic data show that HCNN has a high-resolution of identification capability on three types of targets (ballistic missile, hypersonic glide vehicle, hypersonic cruise missile) even in conditions of increased measuring errors, increased time step, and with no preliminary primary data processing. Moreover, one can easily adjust the proposed network for discrimination of an enlarged number of vehicle types.","PeriodicalId":288550,"journal":{"name":"2019 International Conference on Engineering and Telecommunication (EnT)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Engineering and Telecommunication (EnT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EnT47717.2019.9030537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper proposes a Hypersonic Convolutional Neural Network (HCNN) for hypersonic aircraft classification based on a vehicle flight path. The experiments on synthetic data show that HCNN has a high-resolution of identification capability on three types of targets (ballistic missile, hypersonic glide vehicle, hypersonic cruise missile) even in conditions of increased measuring errors, increased time step, and with no preliminary primary data processing. Moreover, one can easily adjust the proposed network for discrimination of an enlarged number of vehicle types.
基于卷积神经网络的高超声速飞行器轨迹分类
提出了一种基于飞行器飞行轨迹的高超声速卷积神经网络(HCNN)分类方法。综合数据实验表明,在测量误差增大、时间步长增大、未进行初步数据处理的情况下,HCNN对弹道导弹、高超声速滑翔飞行器、高超声速巡航导弹三种目标均具有高分辨率的识别能力。此外,人们可以很容易地调整提议的网络,以区分更多的车辆类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信