Quasi-optimal values in the Hamiltonian-based synchronization of chaotic systems

J. Muñoz-Pacheco, L. C. Gómez Pavón, O. Félix-Beltrán, A. Luis-Ramos
{"title":"Quasi-optimal values in the Hamiltonian-based synchronization of chaotic systems","authors":"J. Muñoz-Pacheco, L. C. Gómez Pavón, O. Félix-Beltrán, A. Luis-Ramos","doi":"10.1109/ICCDCS.2014.7016177","DOIUrl":null,"url":null,"abstract":"In this paper a quasi-optimal surface for the observer gain in a Hamiltonian-based controller with applications in chaos synchronization is reported. The synchronization scheme is based on a master-slave topology composed of two chaotic oscillators with identical parameters but by using different initial conditions. Therefore, a trade-off analysis on the synchronization regime and the observer gains (K) in an n-scroll chaotic system is obtained. Lyapunov exponents are not required to prove the stability of the synchronization error, which could expand the study to many others chaotic systems. The synchronization error can be obtained as lower than 0.0001 for certain types of permutations of K. Numerical simulations validate the theoretical background and the usefulness of the proposed approach.","PeriodicalId":200044,"journal":{"name":"2014 International Caribbean Conference on Devices, Circuits and Systems (ICCDCS)","volume":"03 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Caribbean Conference on Devices, Circuits and Systems (ICCDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCDCS.2014.7016177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper a quasi-optimal surface for the observer gain in a Hamiltonian-based controller with applications in chaos synchronization is reported. The synchronization scheme is based on a master-slave topology composed of two chaotic oscillators with identical parameters but by using different initial conditions. Therefore, a trade-off analysis on the synchronization regime and the observer gains (K) in an n-scroll chaotic system is obtained. Lyapunov exponents are not required to prove the stability of the synchronization error, which could expand the study to many others chaotic systems. The synchronization error can be obtained as lower than 0.0001 for certain types of permutations of K. Numerical simulations validate the theoretical background and the usefulness of the proposed approach.
混沌系统基于哈密顿同步的拟最优值
本文报道了混沌同步中基于哈密顿控制器观测器增益的拟最优曲面。该同步方案基于由两个参数相同但初始条件不同的混沌振子组成的主从拓扑结构。因此,对n涡旋混沌系统的同步状态和观测器增益(K)进行了权衡分析。不需要Lyapunov指数来证明同步误差的稳定性,这可以将研究扩展到许多其他混沌系统。对于某些类型的k排列,可以获得小于0.0001的同步误差。数值模拟验证了理论背景和所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信