{"title":"Control fusion strategy via differential equations based hysteresis operator","authors":"M. Ramli, Xinkai Chen","doi":"10.1109/ICMA.2016.7558776","DOIUrl":null,"url":null,"abstract":"Hard nonlinearity or hysteresis effect is the main obstacle in most smart material based actuators which makes their optimal usage impossible. Thus, it is essential to develop a comprehensive strategy for modeling and control in order to mitigate this hysteresis nonlinearity. This paper investigates the viability of the differential equations based models towards hysteresis characterization and control fusion strategy in order to solve the tracking problem in the piezoelectric-based actuators. The analytical and simulation results suggest that this category of model is simple to use and has clear physical meanings. More importantly, it is established that only Bouc-Wen (BW) model has the ability to be synthesized directly into the control design. Finally, a control strategy is devised based on BW model and is experimentally verified in the discrete-time domain.","PeriodicalId":260197,"journal":{"name":"2016 IEEE International Conference on Mechatronics and Automation","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Mechatronics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA.2016.7558776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Hard nonlinearity or hysteresis effect is the main obstacle in most smart material based actuators which makes their optimal usage impossible. Thus, it is essential to develop a comprehensive strategy for modeling and control in order to mitigate this hysteresis nonlinearity. This paper investigates the viability of the differential equations based models towards hysteresis characterization and control fusion strategy in order to solve the tracking problem in the piezoelectric-based actuators. The analytical and simulation results suggest that this category of model is simple to use and has clear physical meanings. More importantly, it is established that only Bouc-Wen (BW) model has the ability to be synthesized directly into the control design. Finally, a control strategy is devised based on BW model and is experimentally verified in the discrete-time domain.