{"title":"On automated ear-based authentication","authors":"Aviwe Kohlakala, Johannes Coetzer","doi":"10.1109/SAUPEC/RobMech/PRASA48453.2020.9041089","DOIUrl":null,"url":null,"abstract":"In this paper novel semi-automated and fully automated ear-based biometric authentication systems are proposed. The region of interest (ROI) is manually specified and automatically detected within the the context of the semi-automated and fully automated systems, respectively. The automatic detection of the ROI is facilitated by a convolutional neural network (CNN) and morphological postprocessing. The CNN classifies sub-images of the ear in question as either foreground (part of the ear shell) or background (homogeneous skin, hair or jewellery). Prominent contours are detected within the ROI. The discrete Radon transform (DRT) is subsequently applied to the resulting binary contour image for the purpose of feature extraction. Feature matching is achieved by implementing an Euclidean distance measure. A ranking verifier is constructed for the purpose of authentication. The results are encouraging.","PeriodicalId":215514,"journal":{"name":"2020 International SAUPEC/RobMech/PRASA Conference","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International SAUPEC/RobMech/PRASA Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAUPEC/RobMech/PRASA48453.2020.9041089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
In this paper novel semi-automated and fully automated ear-based biometric authentication systems are proposed. The region of interest (ROI) is manually specified and automatically detected within the the context of the semi-automated and fully automated systems, respectively. The automatic detection of the ROI is facilitated by a convolutional neural network (CNN) and morphological postprocessing. The CNN classifies sub-images of the ear in question as either foreground (part of the ear shell) or background (homogeneous skin, hair or jewellery). Prominent contours are detected within the ROI. The discrete Radon transform (DRT) is subsequently applied to the resulting binary contour image for the purpose of feature extraction. Feature matching is achieved by implementing an Euclidean distance measure. A ranking verifier is constructed for the purpose of authentication. The results are encouraging.