PHARMACOMES: Cause-and-Effect Models linking Drugs, Targets and Disease Mechanisms

M. Hofmann-Apitius
{"title":"PHARMACOMES: Cause-and-Effect Models linking Drugs, Targets and Disease Mechanisms","authors":"M. Hofmann-Apitius","doi":"10.14293/s2199-rexpo22006.v1","DOIUrl":null,"url":null,"abstract":"Cause-and-Effect models are knowledge assemblies representing essential causal and correlative relationships in a pre-defined disease context. Unlike “pathways”, Cause-and-Effect models can span across scales and readily integrate clinical readouts and endpoints. In my talk, I will guide through some of our work on generating Cause-and-Effect models in the field of neurodegenerative diseases (Alzheimer; Parkinsonism) and will demonstrate, how we generate those using advanced, AI-based “text-2-graph” workflows. The enrichment of Cause-and-Effect models with drug-target information allows us to generate “disease-specific PHARMACOMES”. PHARMACOMES link drug-target information to specific pathophysiology mechanisms and are ideally suited for rational approaches towards modulation of pathophysiology mechanisms. Examples for productive usage of this novel approach in drug repurposing experiments will cover the COVID-19 PHARMACOME and the Human Brain PHARMACOME","PeriodicalId":346256,"journal":{"name":"PHARMACOMES: Cause-and-Effect Models linking Drugs, Targets and Disease Mechanisms","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PHARMACOMES: Cause-and-Effect Models linking Drugs, Targets and Disease Mechanisms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14293/s2199-rexpo22006.v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cause-and-Effect models are knowledge assemblies representing essential causal and correlative relationships in a pre-defined disease context. Unlike “pathways”, Cause-and-Effect models can span across scales and readily integrate clinical readouts and endpoints. In my talk, I will guide through some of our work on generating Cause-and-Effect models in the field of neurodegenerative diseases (Alzheimer; Parkinsonism) and will demonstrate, how we generate those using advanced, AI-based “text-2-graph” workflows. The enrichment of Cause-and-Effect models with drug-target information allows us to generate “disease-specific PHARMACOMES”. PHARMACOMES link drug-target information to specific pathophysiology mechanisms and are ideally suited for rational approaches towards modulation of pathophysiology mechanisms. Examples for productive usage of this novel approach in drug repurposing experiments will cover the COVID-19 PHARMACOME and the Human Brain PHARMACOME
药物组:连接药物、靶点和疾病机制的因果模型
因果模型是在预先定义的疾病环境中表示基本因果关系和相关关系的知识集合。与“路径”不同,因果模型可以跨越尺度,很容易整合临床读数和终点。在我的演讲中,我将介绍我们在神经退行性疾病(阿尔茨海默病;并将演示如何使用先进的、基于人工智能的“文本-2-图”工作流来生成这些工作流程。利用药物靶点信息丰富因果模型使我们能够生成“疾病特异性药物组”。pharmacome将药物靶标信息与特定的病理生理机制联系起来,非常适合于合理的方法来调节病理生理机制。在药物再利用实验中有效使用这种新方法的例子将涵盖COVID-19药物组和人脑药物组
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信