Enhancing Trust-based Data Analytics for Forecasting Social Harm

N. Chowdhury, R. Raje, Saurabh Pandey, G. Mohler, J. Carter
{"title":"Enhancing Trust-based Data Analytics for Forecasting Social Harm","authors":"N. Chowdhury, R. Raje, Saurabh Pandey, G. Mohler, J. Carter","doi":"10.1109/ISC251055.2020.9239015","DOIUrl":null,"url":null,"abstract":"First responders deal with a variety of “social harm” events (e.g. crime, traffic crashes, medical emergencies) that result in physical, emotional, and/or financial hardships. Through data analytics, resources can be efficiently allocated to increase the impact of interventions aimed at reducing social harm -T-CDASH (Trusted Community Data Analytics for Social Harm) is an ongoing joint effort between the Indiana University Purdue University Indianapolis (IUPUI), the Indianapolis Metropolitan Police Department (IMPD), and the Indianapolis Emergency Medical Services (IEMS) with this goal of using data analytics to efficiently allocate resources to respond to and reduce social harm. In this paper, we make several enhancements to our previously introduced trust estimation framework T-CDASH. These enhancements include additional metrics for measuring the effectiveness of forecasts, evaluation on new datasets, and an incorporation of collaborative trust models. To empirically validate our current work, we ran simulations on newly collected 2019 and 2020 (Jan-April) social harm data from the Indianapolis metro area. We describe the behavior and significance of the collaboration and their comparison with previously introduced stand-alone models.","PeriodicalId":201808,"journal":{"name":"2020 IEEE International Smart Cities Conference (ISC2)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Smart Cities Conference (ISC2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISC251055.2020.9239015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

First responders deal with a variety of “social harm” events (e.g. crime, traffic crashes, medical emergencies) that result in physical, emotional, and/or financial hardships. Through data analytics, resources can be efficiently allocated to increase the impact of interventions aimed at reducing social harm -T-CDASH (Trusted Community Data Analytics for Social Harm) is an ongoing joint effort between the Indiana University Purdue University Indianapolis (IUPUI), the Indianapolis Metropolitan Police Department (IMPD), and the Indianapolis Emergency Medical Services (IEMS) with this goal of using data analytics to efficiently allocate resources to respond to and reduce social harm. In this paper, we make several enhancements to our previously introduced trust estimation framework T-CDASH. These enhancements include additional metrics for measuring the effectiveness of forecasts, evaluation on new datasets, and an incorporation of collaborative trust models. To empirically validate our current work, we ran simulations on newly collected 2019 and 2020 (Jan-April) social harm data from the Indianapolis metro area. We describe the behavior and significance of the collaboration and their comparison with previously introduced stand-alone models.
加强基于信任的数据分析,预测社会危害
第一反应者处理各种“社会危害”事件(如犯罪、交通事故、医疗紧急情况),导致身体、情感和/或经济困难。通过数据分析,可以有效地分配资源,以增加旨在减少社会危害的干预措施的影响-T-CDASH(社会危害可信社区数据分析)是印第安纳大学普渡大学印第安纳波利斯分校(IUPUI),印第安纳波利斯大都会警察局(IMPD),以及印第安纳波利斯紧急医疗服务中心(IEMS),他们的目标是利用数据分析来有效地分配资源,以应对和减少社会危害。在本文中,我们对之前引入的信任估计框架T-CDASH进行了一些增强。这些增强包括用于度量预测有效性的额外度量、对新数据集的评估以及协作信任模型的合并。为了从经验上验证我们目前的工作,我们对印第安纳波利斯都市区新收集的2019年和2020年(1月至4月)社会危害数据进行了模拟。我们描述了协作的行为和意义,以及它们与之前介绍的独立模型的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信