Optimized design of a rigid kinematic module for antagonistic soft actuation

Ming Luo, E. Skorina, Weijia Tao, Fuchen Chen, C. Onal
{"title":"Optimized design of a rigid kinematic module for antagonistic soft actuation","authors":"Ming Luo, E. Skorina, Weijia Tao, Fuchen Chen, C. Onal","doi":"10.1109/TePRA.2015.7219694","DOIUrl":null,"url":null,"abstract":"Soft actuators can be useful in human-occupied environments because of their adaptable compliance and light weight. We previously introduced a variation of fluidic soft actuators we call the reverse pneumatic artificial muscle (rPAM), and developed an analytical model to predict its performance both individually and while driving a 1 degree of freedom revolute joint antagonistically. Here, we expand upon this previous work, adding a correction term to improve model performance and using it to perform optimization on the kinematic module dimensions to maximize achievable joint angles. We also offer advances on the joint design to improve its ability to operate at these larger angles. The new joint had a workspace of around ±60°, which was predicted accurately by the improved model.","PeriodicalId":325788,"journal":{"name":"2015 IEEE International Conference on Technologies for Practical Robot Applications (TePRA)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Technologies for Practical Robot Applications (TePRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TePRA.2015.7219694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Soft actuators can be useful in human-occupied environments because of their adaptable compliance and light weight. We previously introduced a variation of fluidic soft actuators we call the reverse pneumatic artificial muscle (rPAM), and developed an analytical model to predict its performance both individually and while driving a 1 degree of freedom revolute joint antagonistically. Here, we expand upon this previous work, adding a correction term to improve model performance and using it to perform optimization on the kinematic module dimensions to maximize achievable joint angles. We also offer advances on the joint design to improve its ability to operate at these larger angles. The new joint had a workspace of around ±60°, which was predicted accurately by the improved model.
对抗软驱动刚体运动模块的优化设计
软执行器可用于人类居住的环境,因为他们的适应性顺应性和重量轻。我们之前介绍了一种流体软执行器的变体,我们称之为反向气动人工肌肉(rpm),并开发了一个分析模型来预测其单独和拮抗驱动1自由度旋转关节时的性能。在这里,我们扩展了之前的工作,增加了一个修正项来提高模型性能,并使用它来对运动学模块尺寸进行优化,以最大化可实现的关节角度。我们还提供先进的关节设计,以提高其在这些大角度下的操作能力。新关节的工作空间约为±60°,通过改进的模型可以准确地预测该工作空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信