{"title":"Vertically-addressed test structures (VATS) for 3D IC variability and stress measurements","authors":"C. O'Sullivan, P. Levine, S. Garg","doi":"10.1109/ISQED.2013.6523596","DOIUrl":null,"url":null,"abstract":"We propose a new test array architecture-vertically-addressed test structures (VATS)-to experimentally characterize the within-tier and tier-to-tier process variations and through-silicon via (TSV) induced stress in 3D integrated circuits (ICs). The proposed VATS architecture utilizes the benefits of 3D integration to simultaneously provide high density, low I/O pin utilization, and high fidelity. A test chip featuring eight VATS arrays (>15,000 active devices) has been designed and fabricated in a two-tier, 130-nm 3D IC technology. Simulation results highlight the advantages of the proposed VATS architecture compared to conventional 2D test arrays.We also propose a radial filtering scheme to discriminate between process variations and the impact of TSV-induced stress in 3D ICs.","PeriodicalId":127115,"journal":{"name":"International Symposium on Quality Electronic Design (ISQED)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2013.6523596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a new test array architecture-vertically-addressed test structures (VATS)-to experimentally characterize the within-tier and tier-to-tier process variations and through-silicon via (TSV) induced stress in 3D integrated circuits (ICs). The proposed VATS architecture utilizes the benefits of 3D integration to simultaneously provide high density, low I/O pin utilization, and high fidelity. A test chip featuring eight VATS arrays (>15,000 active devices) has been designed and fabricated in a two-tier, 130-nm 3D IC technology. Simulation results highlight the advantages of the proposed VATS architecture compared to conventional 2D test arrays.We also propose a radial filtering scheme to discriminate between process variations and the impact of TSV-induced stress in 3D ICs.