An Interval Type-2 Fractional Order Fuzzy Logic Controller Employed to Uncertain Nonlinear Inverted Pendulum

Anupam Kumar, Vijay Kumar
{"title":"An Interval Type-2 Fractional Order Fuzzy Logic Controller Employed to Uncertain Nonlinear Inverted Pendulum","authors":"Anupam Kumar, Vijay Kumar","doi":"10.1109/INDICON.2017.8487553","DOIUrl":null,"url":null,"abstract":"Inverted pendulum systems are extremely unstable, nonlinear, uncertain system wherein the load disturbance, random noise, and parameter variation adversely affect the performance of these systems. Therefore, controller's design, for controlling the pendulum angle, is an ambitious and fascinating task for control designer to handle such complexities present in the system. In this paper, the interval type-2 fuzzy proportional derivative plus integral $(\\mathrm{IT}2\\mathrm{FPD}+\\mathrm{I})$ is incorporated with fractional order PID (FOPID) controller and resulting new interval type-2 fractional order fuzzy $\\mathrm{PD}+\\mathrm{I}(\\mathrm{IT}2\\mathrm{FO}-\\mathrm{FPD}+\\mathrm{I})$ controller is presented for inverted pendulum system to suspend pendulum in the vertical on cart. For the optimal controller design, the recent artificial bee colony (ABC) optimization technique is applied to achieve optimal controller parameters. Furthermore, to show the effectiveness of presented control approach, the inverted pendulum system is also tested in presence of disturbance, random noise rejection, and parameter variations. Eventually, the results clearly show that the performances of $\\mathrm{IT}2\\mathrm{FO}-\\mathrm{FPD}+\\mathrm{I}$ is superior to type-1 fractional order fuzzy $\\mathrm{PD} +\\mathrm{I}$ controller $(\\mathrm{T}1\\mathrm{FO}-\\mathrm{FPD}+\\mathrm{I}),\\ \\mathrm{T}1\\mathrm{FPD}+\\mathrm{I}$, and PID controllers.","PeriodicalId":263943,"journal":{"name":"2017 14th IEEE India Council International Conference (INDICON)","volume":"03 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th IEEE India Council International Conference (INDICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDICON.2017.8487553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Inverted pendulum systems are extremely unstable, nonlinear, uncertain system wherein the load disturbance, random noise, and parameter variation adversely affect the performance of these systems. Therefore, controller's design, for controlling the pendulum angle, is an ambitious and fascinating task for control designer to handle such complexities present in the system. In this paper, the interval type-2 fuzzy proportional derivative plus integral $(\mathrm{IT}2\mathrm{FPD}+\mathrm{I})$ is incorporated with fractional order PID (FOPID) controller and resulting new interval type-2 fractional order fuzzy $\mathrm{PD}+\mathrm{I}(\mathrm{IT}2\mathrm{FO}-\mathrm{FPD}+\mathrm{I})$ controller is presented for inverted pendulum system to suspend pendulum in the vertical on cart. For the optimal controller design, the recent artificial bee colony (ABC) optimization technique is applied to achieve optimal controller parameters. Furthermore, to show the effectiveness of presented control approach, the inverted pendulum system is also tested in presence of disturbance, random noise rejection, and parameter variations. Eventually, the results clearly show that the performances of $\mathrm{IT}2\mathrm{FO}-\mathrm{FPD}+\mathrm{I}$ is superior to type-1 fractional order fuzzy $\mathrm{PD} +\mathrm{I}$ controller $(\mathrm{T}1\mathrm{FO}-\mathrm{FPD}+\mathrm{I}),\ \mathrm{T}1\mathrm{FPD}+\mathrm{I}$, and PID controllers.
一种用于不确定非线性倒立摆的区间2型分数阶模糊控制器
倒立摆系统是极不稳定的、非线性的、不确定的系统,其中负载扰动、随机噪声和参数变化会对系统的性能产生不利影响。因此,控制摆角的控制器设计是一项雄心勃勃且令人着迷的任务,控制设计者需要处理系统中存在的这种复杂性。本文将区间2型模糊比例导数加积分$(\ mathm {IT}2\ mathm {FPD}+\ mathm {I})$与分数阶PID (FOPID)控制器结合,提出了一种新的区间2型分数阶模糊$\ mathm {PD}+\ mathm {I}(\ mathm {IT}2\ mathm {FO}-\ mathm {FPD}+\ mathm {I})$控制器,用于倒立摆系统将摆悬挂在垂直小车上。在最优控制器设计中,采用最新的人工蜂群(ABC)优化技术实现最优控制器参数。此外,为了证明所提出的控制方法的有效性,还对倒立摆系统进行了干扰、随机噪声抑制和参数变化的测试。最终,结果清楚地表明,$\mathrm{IT}2\mathrm{FO}-\mathrm{FPD}+\mathrm{I}$的性能优于1型分数阶模糊$\mathrm{PD} +\mathrm{I}$控制器(\mathrm{T}1\mathrm{FO}-\mathrm{FPD}+\mathrm{I} $)、\ \mathrm{T}1\mathrm{FPD}+\mathrm{I}$和PID控制器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信